Sedimentary deposits of the Lower Cretaceous Xiagou Formation form the most significant potential hydrocarbon reservoirs in the Qingxi Sag, Jiuquan Basin(NW China). Zircon U-Pb ages of the dated basalts at the top of ...Sedimentary deposits of the Lower Cretaceous Xiagou Formation form the most significant potential hydrocarbon reservoirs in the Qingxi Sag, Jiuquan Basin(NW China). Zircon U-Pb ages of the dated basalts at the top of the Xiagou Formation give an isochron age of 115.6 Ma, and the sedimentation interval of the Xiagou Formation was speculated to range from about 125/124 Ma to 115 Ma based on paleontological research and stratigraphic correlation analysis. Here we use GR logging data as a palaeoenvironmental and palaeoclimatic proxy to conduct a detailed cyclostratigraphic study of five selected wells. Power spectra, evolutionary fast Fourier transformation and wavelet analysis all reveal significant sedimentary cycles in the Xiagou Formation. The ratios of cycle wavelengths in these stratigraphic units are 33.82 m : 7.91 m : 3.06 m : 1.79 m, which is similar to the ratio of orbital targets of 20 : 5 : 2 : 1. The ratio of 20 : 5 : 2 : 1 is interpreted as Milankovitch cycles of 405 kyr long eccentricity,100 kyr short eccentricity, 37 kyr obliquity, and 22 kyr precession cycles respectively. A high-resolution astronomical time scale is constructed by tuning the stratigraphy into target curves of orbital cycles respectively. Based on the astronomical time scale, the absolute ages of 55 samples were estimated,which are used for subsequent stable carbon and oxygen isotope stratigraphy analysis. The analysis results of the five studied wells in the Qingxi Sag indicate:(1) a negative trend of δ^(13)C values upwards in the Xiagou Formation, and(2) negative δ^(18)O values with a positive trend upwards. Both relatively heavy values and pronounced covariances of δ^(13)C values and δ^(18)O values indicate an arid-evaporationcontrolled climate during the sedimentary period of the Lower Cretaceous Xiagou Formation, Qingxi Sag, Jiuquan Basin. Moreover, positive covariances of SQK_1g_(2+3) indicate extremely high temperature, and negative covariances of SQK_1g_1 indicate a relatively low temperature.展开更多
The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic...The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic isochronous center is two.展开更多
Lower Buntsandstein small—scale cycles recognized in the Central European Basin(CEB) are readily used for astrochronological calibration of the Early Triassic time scales,although they are not well studied sedimentol...Lower Buntsandstein small—scale cycles recognized in the Central European Basin(CEB) are readily used for astrochronological calibration of the Early Triassic time scales,although they are not well studied sedimentologically.Three borehole sections from the eastern part of the CEB,forming a south-north transect perpendicular to the basin axis,were studied in terms to better understand the depositional history of the Lower Buntsandstein developed as the Baltic Formation in the studied Polish part of the basin.Eleven sedimentary facies were recognized,based on lithological and sedimentological investigations of 655.7 m of drill cores from the Otyń IG 1,Gorzów Wielkopolski IG 1 and Kamień Pomorski IG 1 boreholes.The facies can be grouped according to a lithological criterion into facies of predominantly siliciclastic lithology(including 9facies types) and facies of predominantly carbonate lithology(including 2 facies types).Facies analysis allowed to distinguish 8 facies associations of:1) alluvial fan,2) playa,3) sandy-muddy coastal plain,4)embayment and distal delta,5) lagoon,6) sand bars or shoals,7) ooidal shoals or bars,and 8) offshore.Deepening-upward(DC) and shallowing-upward(SC) sedimentary cycles were recognized in parts of the Baltic Formation,with DCs dominating in the southernmost located Otyń IG 1,and SCs dominating in Gorz ow Wielkopolski IG 1,located in the axial part of the basin.Symmetrical cycles are very rare.The statistical significance of the sedimentary cycles is relatively low according to Markov-chain analysis conducted with the phpSedistat software of Stanova et al.(2009).Analysis of small—scale cycles performed on well logs of investigated boreholes and additional boreholes in the vicinity of Otyń IG 1,implementing the earlier study of Becker(2005),showed that the correlation of well-log cycles(GR cycles) and sedimentary cycles is not obvious.GR cycles can be roughly correlated with lithological carbonate—siliciclastic cycles(c-s cycles),reflecting alternations of facies groups of predominantly carbonate and siliciclastic lithology.Calibration of GR cycles to earlier magnetostratigraphic results of Nawrocki(1997) and Becker and Nawrocki(2014) showed that neither the boundaries of GR cycles serve as reference horizons,nor the cycles document equal time periods.All existing depositional models of the Lower Buntsandstein were discussed,stressing the possible simultaneous interaction of allochthonous and autochthonous processes.Moreover,the tectonic overprint of the Central European Basin system during the Early Triassic should be taken into account.The presented results suggest that the Lower Buntsandstein cyclicity of the CEB cannot serve as a basis for astrochronological analysis.展开更多
The simultaneity and the regionality of the chemo-cycles are proved by cycle-to-cycle correlation integrated with conodont biostratigraphic correlation of the upper part of the Givetian (Devonian) between Liujing and ...The simultaneity and the regionality of the chemo-cycles are proved by cycle-to-cycle correlation integrated with conodont biostratigraphic correlation of the upper part of the Givetian (Devonian) between Liujing and Dale. The study indicates that these chemo-cycles with time spans of 0.10 Ma have an internal relation with paleoclimatic changes, and it might have an origin through Milankovitch eccentricity cyclicity.展开更多
New conditions for a planar homoclinic loop to have cyclicity two under multiple parameter perturbations have been obtained. As an application it is proved that a homoclinic loop of a nongeneric cubic Hamiltonian has ...New conditions for a planar homoclinic loop to have cyclicity two under multiple parameter perturbations have been obtained. As an application it is proved that a homoclinic loop of a nongeneric cubic Hamiltonian has cyclicity two under arbitrary quadratic perturbations.展开更多
We establish an algebraic method and an integral method to compute the Liapunov constants and Hopf cyclicity for a general Lienard system on the plane.
This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node P0 and two hyperbolic saddles P1 and P2, where the hyperbolicity ratio of the saddle P1 (which connects the saddle-no...This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node P0 and two hyperbolic saddles P1 and P2, where the hyperbolicity ratio of the saddle P1 (which connects the saddle-node with hh-connection) is equal to 1 and that of the other saddle P2 is irrational. It is assumed that the connections between P0 to P2 and P0 to P1 keep unbroken. Then the cyclicity of this kind of polycycle is no more than m + 3 if the saddle P1 is of order m and the hyperbolicity ratio of P2 is bigger than m.Furthermore, the cyclicity of this polycycle is no more than 7 if the saddle P1 is of order 2 and the hyperbolicity ratio of P2 is located in the interval (1, 2).展开更多
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report...Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.展开更多
This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node and two hyperbolic saddles, where the hyperbolicity ratio of the saddle (which connects the saddle-node with hp-conn...This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node and two hyperbolic saddles, where the hyperbolicity ratio of the saddle (which connects the saddle-node with hp-connection) is equal to 1 and that of the other saddle is irrational. It is obtained that the cyclicity of this kind of polycycle is no more than 5 if the hp-connection keeps unbroken under the C^∞ perturbations.展开更多
A general method for a homoclinic loop of planar Hamiltonian systems to bifurcate two or three limit cycles under perturbations is established.Certain conditions are given under which the cyclicity of a homoclinic loo...A general method for a homoclinic loop of planar Hamiltonian systems to bifurcate two or three limit cycles under perturbations is established.Certain conditions are given under which the cyclicity of a homoclinic loop equals 1 or 2.As an application to quadratic systems,it is proved that the cyclicity of homoclinic loops of quadratic in-tegrable and non-Hamiltonian systems equals 2 except for one case.展开更多
The conjecture E(k)≤k is proved to be true if and only if k=1, 2, 3, where E(k) is the cyclicity of condimension k generic elementary polycycles. It is also proved that the cyclicity of any codimension 3 ensembles ex...The conjecture E(k)≤k is proved to be true if and only if k=1, 2, 3, where E(k) is the cyclicity of condimension k generic elementary polycycles. It is also proved that the cyclicity of any codimension 3 ensembles except ensembles with "lips" is ≤6. By the way, the methods usually used in the study of cyclicity of polycycles such as derivation division algorithm, Khovanskii procedure and the method of critical point analysis are introduced.展开更多
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ...Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states.展开更多
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ...Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.展开更多
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves...Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.展开更多
Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability st...Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.展开更多
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show tha...A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.展开更多
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ...Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.展开更多
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons...Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.展开更多
基金the support of a Chinese Scholarship Council’s overseas student scholarship to enable her to visit the University of Vienna for 24 monthssupported by Research Institute Exploration and Development, PetroChina Yumen Oilfield CompanyThe China National Key Research Project (No. 2017ZX05009-002-003) supported this study
文摘Sedimentary deposits of the Lower Cretaceous Xiagou Formation form the most significant potential hydrocarbon reservoirs in the Qingxi Sag, Jiuquan Basin(NW China). Zircon U-Pb ages of the dated basalts at the top of the Xiagou Formation give an isochron age of 115.6 Ma, and the sedimentation interval of the Xiagou Formation was speculated to range from about 125/124 Ma to 115 Ma based on paleontological research and stratigraphic correlation analysis. Here we use GR logging data as a palaeoenvironmental and palaeoclimatic proxy to conduct a detailed cyclostratigraphic study of five selected wells. Power spectra, evolutionary fast Fourier transformation and wavelet analysis all reveal significant sedimentary cycles in the Xiagou Formation. The ratios of cycle wavelengths in these stratigraphic units are 33.82 m : 7.91 m : 3.06 m : 1.79 m, which is similar to the ratio of orbital targets of 20 : 5 : 2 : 1. The ratio of 20 : 5 : 2 : 1 is interpreted as Milankovitch cycles of 405 kyr long eccentricity,100 kyr short eccentricity, 37 kyr obliquity, and 22 kyr precession cycles respectively. A high-resolution astronomical time scale is constructed by tuning the stratigraphy into target curves of orbital cycles respectively. Based on the astronomical time scale, the absolute ages of 55 samples were estimated,which are used for subsequent stable carbon and oxygen isotope stratigraphy analysis. The analysis results of the five studied wells in the Qingxi Sag indicate:(1) a negative trend of δ^(13)C values upwards in the Xiagou Formation, and(2) negative δ^(18)O values with a positive trend upwards. Both relatively heavy values and pronounced covariances of δ^(13)C values and δ^(18)O values indicate an arid-evaporationcontrolled climate during the sedimentary period of the Lower Cretaceous Xiagou Formation, Qingxi Sag, Jiuquan Basin. Moreover, positive covariances of SQK_1g_(2+3) indicate extremely high temperature, and negative covariances of SQK_1g_1 indicate a relatively low temperature.
基金Supported by the National Natural Science Foundation of China( No.195 310 70 ) and Natural Science Fundation ofHubei Province( No.98J12 1)
文摘The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic isochronous center is two.
基金financed from the statutory funds of the Polish Geological Institute-National Research Institute(projects No. 61.2201.0605.00.0 and No.62.9012.2034.00.0)。
文摘Lower Buntsandstein small—scale cycles recognized in the Central European Basin(CEB) are readily used for astrochronological calibration of the Early Triassic time scales,although they are not well studied sedimentologically.Three borehole sections from the eastern part of the CEB,forming a south-north transect perpendicular to the basin axis,were studied in terms to better understand the depositional history of the Lower Buntsandstein developed as the Baltic Formation in the studied Polish part of the basin.Eleven sedimentary facies were recognized,based on lithological and sedimentological investigations of 655.7 m of drill cores from the Otyń IG 1,Gorzów Wielkopolski IG 1 and Kamień Pomorski IG 1 boreholes.The facies can be grouped according to a lithological criterion into facies of predominantly siliciclastic lithology(including 9facies types) and facies of predominantly carbonate lithology(including 2 facies types).Facies analysis allowed to distinguish 8 facies associations of:1) alluvial fan,2) playa,3) sandy-muddy coastal plain,4)embayment and distal delta,5) lagoon,6) sand bars or shoals,7) ooidal shoals or bars,and 8) offshore.Deepening-upward(DC) and shallowing-upward(SC) sedimentary cycles were recognized in parts of the Baltic Formation,with DCs dominating in the southernmost located Otyń IG 1,and SCs dominating in Gorz ow Wielkopolski IG 1,located in the axial part of the basin.Symmetrical cycles are very rare.The statistical significance of the sedimentary cycles is relatively low according to Markov-chain analysis conducted with the phpSedistat software of Stanova et al.(2009).Analysis of small—scale cycles performed on well logs of investigated boreholes and additional boreholes in the vicinity of Otyń IG 1,implementing the earlier study of Becker(2005),showed that the correlation of well-log cycles(GR cycles) and sedimentary cycles is not obvious.GR cycles can be roughly correlated with lithological carbonate—siliciclastic cycles(c-s cycles),reflecting alternations of facies groups of predominantly carbonate and siliciclastic lithology.Calibration of GR cycles to earlier magnetostratigraphic results of Nawrocki(1997) and Becker and Nawrocki(2014) showed that neither the boundaries of GR cycles serve as reference horizons,nor the cycles document equal time periods.All existing depositional models of the Lower Buntsandstein were discussed,stressing the possible simultaneous interaction of allochthonous and autochthonous processes.Moreover,the tectonic overprint of the Central European Basin system during the Early Triassic should be taken into account.The presented results suggest that the Lower Buntsandstein cyclicity of the CEB cannot serve as a basis for astrochronological analysis.
文摘The simultaneity and the regionality of the chemo-cycles are proved by cycle-to-cycle correlation integrated with conodont biostratigraphic correlation of the upper part of the Givetian (Devonian) between Liujing and Dale. The study indicates that these chemo-cycles with time spans of 0.10 Ma have an internal relation with paleoclimatic changes, and it might have an origin through Milankovitch eccentricity cyclicity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 19531070 and 19771037)
文摘New conditions for a planar homoclinic loop to have cyclicity two under multiple parameter perturbations have been obtained. As an application it is proved that a homoclinic loop of a nongeneric cubic Hamiltonian has cyclicity two under arbitrary quadratic perturbations.
文摘We establish an algebraic method and an integral method to compute the Liapunov constants and Hopf cyclicity for a general Lienard system on the plane.
基金This work was supported by the National Natural Science Foundation of China(Grant No.19901001).
文摘This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node P0 and two hyperbolic saddles P1 and P2, where the hyperbolicity ratio of the saddle P1 (which connects the saddle-node with hh-connection) is equal to 1 and that of the other saddle P2 is irrational. It is assumed that the connections between P0 to P2 and P0 to P1 keep unbroken. Then the cyclicity of this kind of polycycle is no more than m + 3 if the saddle P1 is of order m and the hyperbolicity ratio of P2 is bigger than m.Furthermore, the cyclicity of this polycycle is no more than 7 if the saddle P1 is of order 2 and the hyperbolicity ratio of P2 is located in the interval (1, 2).
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,Nos.82171429,81771384a grant from Wuxi Municipal Health Commission,No.1286010241190480(all to YS)。
文摘Interferon regulatory factor 7 plays a crucial role in the innate immune response.However,whether interferon regulatory factor 7-mediated signaling contributes to Parkinson's disease remains unknown.Here we report that interferon regulatory factor 7 is markedly up-regulated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease and co-localizes with microglial cells.Both the selective cyclic guanosine monophosphate adenosine monophosphate synthase inhibitor RU.521 and the stimulator of interferon genes inhibitor H151 effectively suppressed interferon regulatory factor 7 activation in BV2 microglia exposed to 1-methyl-4-phenylpyridinium and inhibited transformation of mouse BV2 microglia into the neurotoxic M1 phenotype.In addition,si RNA-mediated knockdown of interferon regulatory factor 7 expression in BV2 microglia reduced the expression of inducible nitric oxide synthase,tumor necrosis factorα,CD16,CD32,and CD86 and increased the expression of the anti-inflammatory markers ARG1 and YM1.Taken together,our findings indicate that the cyclic guanosine monophosphate adenosine monophosphate synthase-stimulator of interferon genes-interferon regulatory factor 7 pathway plays a crucial role in the pathogenesis of Parkinson's disease.
基金Project sponsored by National Science Foundation (19901001)
文摘This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node and two hyperbolic saddles, where the hyperbolicity ratio of the saddle (which connects the saddle-node with hp-connection) is equal to 1 and that of the other saddle is irrational. It is obtained that the cyclicity of this kind of polycycle is no more than 5 if the hp-connection keeps unbroken under the C^∞ perturbations.
基金Project supported by the National Natural Science Foundation of China.
文摘A general method for a homoclinic loop of planar Hamiltonian systems to bifurcate two or three limit cycles under perturbations is established.Certain conditions are given under which the cyclicity of a homoclinic loop equals 1 or 2.As an application to quadratic systems,it is proved that the cyclicity of homoclinic loops of quadratic in-tegrable and non-Hamiltonian systems equals 2 except for one case.
文摘The conjecture E(k)≤k is proved to be true if and only if k=1, 2, 3, where E(k) is the cyclicity of condimension k generic elementary polycycles. It is also proved that the cyclicity of any codimension 3 ensembles except ensembles with "lips" is ≤6. By the way, the methods usually used in the study of cyclicity of polycycles such as derivation division algorithm, Khovanskii procedure and the method of critical point analysis are introduced.
基金This research was financially supported by the Science and Technology Department of Sichuan Province Project,China(Grant Nos.2022YFSY0007,2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states.
基金the National Natural Science Foundation of China(Grant No.52076028).
文摘Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity.
基金This paper is financially supported by the National Natural Science Foundation of China(Grant Nos.52074263 and 52034007)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_2332).
文摘Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.
基金supported by the National Natural Science Foundation of China(51904059)Applied Basic Research Program of Liaoning(2022JH2/101300200)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515140188)Fundamental Research Funds for the Central Universities(N_(2)002005,N_(2)125004,N_(2)225044)。
文摘Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes.
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
基金the Natural Science Foundation of China(Grant Nos.42302314 and 52078427)the Open foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2022K001).
文摘A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.
基金We acknowledge the funding support from the National Natural Science Foundation of China Youth Fund(Grant No.52004019)the National Natural Science Foundation of China(Grant No.41825018)China Postdoctoral Science Foundation(Grant No.2023M733481).
文摘Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.
基金National Natural Science Foundation of China under Grant No.52278503。
文摘Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.