AIM To study the molecular mechanisms ofretinoic acid(RA)on proliferation andexpression of cyclin-dependent kinase inhibitors(CKI),i.e.p16,p21 and p27 in cultured rathepatic stellate cells(HSC)stimulated withtransform...AIM To study the molecular mechanisms ofretinoic acid(RA)on proliferation andexpression of cyclin-dependent kinase inhibitors(CKI),i.e.p16,p21 and p27 in cultured rathepatic stellate cells(HSC)stimulated withtransforming growth factor beta 1(TGF-β1).METHODS HSC were isolated from healthy ratlivers and cultured.After stimulated with1 mg/L TGF-β1,subcultured HSC were treatedwith or without 1 nmol/L RA.MTT assay,immunocytochemistry(ICC)for p16,p21,p27and α-smooth muscle actin(α-SMA)protein,insitu hybridization(ISH)for retinoic acidreceptor beta 2(RAR-β2)and p16,p21 and p27mRNA and quantitative image analysis(partially)were performed.RESULTS RA inhibited HSC proliferation(41.50%,P【0.05),decreased the protein levelof α-SMA(55.09%,P【0.05),and induced HSCto express RAR-β2 mRNA.In addition,RAincreased the protein level of p16(218.75%,P【0.05)and induced p21 protein expression;meanwhile,p27 was undetectable by ICC in bothcontrol and RA-treated HSC.However,RA hadno influence on the mRNA levels of p16,p21 orp27 as determined by ISH.CONCLISION Up-regulation of p16 and p21 on post-transcriptional level may contribule, in part to RA inhibition of TGF-β1-initiated rat HSC activation in vitro.展开更多
It is known that human papillomavirus (HPV) infection can cause squamous cell neoplasms at several sites, such as cervix uteri carcinoma and oral squamous carcinoma. There is little information on the expression of ...It is known that human papillomavirus (HPV) infection can cause squamous cell neoplasms at several sites, such as cervix uteri carcinoma and oral squamous carcinoma. There is little information on the expression of HPV and its predictive markers in tumours of the major and minor salivary glands of the head and neck. We therefore assessed oral salivary gland neoplasms to identify associations between HPV and infection-related epidermal growth factor receptor (EGFR), cyclin-dependent kinase inhibitor 2A (CDKN2A/p16) and tumour protein p53 (TP53). Formalin-fixed, paraffin-embedded tissue samples from oral salivary gland carcinomas (n=51) and benign tumours (n=26) were analysed by polymerase chain reaction (PCR) analysis for several HPV species, including high-risk types 16 and 18. Evaluation of EGFR, CDKN2A, TP53 and cytomegalovirus (CMV) was performed by immunohistochemistry. Epstein-Barr virus (EBV) was evaluated by EBV-encoded RNA in situ hybridisation. We demonstrated that salivary gland tumours are not associated with HPV infection. The expression of EGFR, CDKN2A and TP53 may be associated with tumour pathology but is not induced by HPV. CMV and EBV were not detectable. In contrast to oral squamous cell carcinomas, HPV, CMV and EBV infections are not associated with malignant or benign neoplastic lesions of the salivary glands.展开更多
Objective Kidney renal clear cell carcinoma(KIRC)is a common renal malignancy that has a poor prognosis.As a member of the F box family,cyclin F(CCNF)plays an important regulatory role in normal tissues and tumors.How...Objective Kidney renal clear cell carcinoma(KIRC)is a common renal malignancy that has a poor prognosis.As a member of the F box family,cyclin F(CCNF)plays an important regulatory role in normal tissues and tumors.However,the underlying mechanism by which CCNF promotes KIRC proliferation still remains unclear.Methods Bioinformatics methods were used to analyze The Cancer Genome Atlas(TCGA)database to obtain gene expression and clinical prognosis data.The CCK8 assay,EdU assay,and xenograft assay were used to detect cell proliferation.The cell senescence and potential mechanism were assessed by SA-β-gal staining,Western blotting,as well as ELISA.Results Our data showed that CCNF was highly expressed in KIRC patients.Meanwhile,downregulation of CCNF inhibited cell proliferation in vivo and in vitro.Further studies showed that the reduction of CCNF promoted cell senescence by decreasing cyclin-dependent kinase 1(CDK1),increasing the proinflammatory factors interleukin(IL)-6 and IL-8,and then enhancing the expression of p21 and p53.Conclusion We propose that the high expression of CCNF in KIRC may play a key role in tumorigenesis by regulating cell senescence.Therefore,CCNF shows promise as a new biomarker to predict the clinical prognosis of KIRC patients and as an effective therapeutic target.展开更多
OBJECTIVE Previous studies have demonstrated acetylcholine muscarinic 4(M4) receptor regulates DARPP-32 phosphorylation at Thr75 in isolated medium spiny neurons(MSNs),indicating antagonistic mechanism with D1 depende...OBJECTIVE Previous studies have demonstrated acetylcholine muscarinic 4(M4) receptor regulates DARPP-32 phosphorylation at Thr75 in isolated medium spiny neurons(MSNs),indicating antagonistic mechanism with D1 dependent signal cascade,but the exact molecular mechanisms remain unclearly.In this study,we investigated the roles of M4 receptor in modulation D1 dependent signal to integrate striatal DA inputs in isolated MSNs.METHODS(1)Lentivirus technology was employed to genetically knock down the M4 receptor of MSNs;(2) Apomorphine(APO),acts as a dopamine receptor agonist,while SCH23390,acts as a selective antagonist for D1,were used to study the pharmacologically profiles with D1 receptor stimulation or blockade,respectively.Then the no subtype-selective muscarinic agonist oxotremorine M(OX) were used to show that mAchRs activation,in order to dissect the particular function of M4,a selective M4 antagonist,MT3 was used;(3) Intracellular cAMP production of MSNs was measured by using time resolved fluorescence resonance energy transfer detection method;(4) Laser confocal was used to explore the expression of M4 and D1 in MSNs;(5) Immunofluorescence cytochemistry and Western blotting were used to confirm the alteration of signaling molecular including P-CREB,DARPP-32 P-Thr34,DARPP-32 P-Thr75,cyclin-dependent kinase 5(CDK5) as wel as p25/35,which are involved in DA-dependent signaling modulations.RESULTS Firstly,TR-FRET assay revealed APO(10-2 mol·L^(-1))significantly increased the level of intracellular cAMP(vs control,n=3,P<0.01),also Western blotting results showed that APO(10-6 mol · L^(-1))increased DARPP-32 Thr34 phosphorylation(vs control,n=3,P<0.01),and these effect were reversed by D1 receptor antagonist SCH23390(vs APO,n=3,P<0.01).Interestingly,we confirmed that OX(10-6 mol · L^(-1)) down-regulated APO-induced DARPP-32 Thr34 phosphorylation(vs APO,n=3,P<0.01),due to its effects on DARPP-32 phosphorylation at Thr75.The results presented the antagonistic mechanism of mAchRs stimulation with D1 dependent signal cascade in MSNs.Meanwhile,OX(10-7,10-6 and10^(-5) mol·L^(-1)) stimulated DARPP-32 phosphorylation at Thr75,and simultaneously up regulated P25/35 and CDK5 activity(vs control,n=3,P<0.01) by using Western blotting assay.Furthermore,roscovitine(10^(-5) mol · L^(-1)),acts as a CDK5 inhibitor,suppressed CDK5 activity(vs control,n=10,P<0.01),and fully inhibited OX-induced DARPP-32 Thr75 phosphorylation(vs OX,n=10,P<0.01).More important,pretreated with roscovitine(10^(-5) mol·L^(-1)),the effect of APO on DARPP-32 Thr34 phosphorylation was potentiated(vs APO,n=3,P<0.05).The result presented CDK5 is required in suppression of APO on DARPP-32 Thr34 phosphorylation mediated through mAchRs stimulation.In addition,laser confocal results showed that the CDK5 up-regulation was mostly confined to MSNs co-expressing M4,which means that M4 participated in CDK5-mediated phosphorylation of DARPP-32 at Thr75.Consistently,immunofluorescence and Western blotting results confirmed that both genetic knockdown and pharmacologic inhibition of M4 receptors with MT3(10-7 mol · L^(-1)) down-regulated the OX-induced the expression of CDK5(vs OX,n=3,P<0.01) and P25/35(vs OX,n=3,P<0.01)in isolated MSNs.CONCLUSION M4 receptor may play an important role in antagonistic regulation D1 dependent signaling,in which CDK5 is required for suppressing D1-DARPP-32 Thr34 phosphorylation in isolated medium spiny neurons.展开更多
This study was designed to investigate the relationship of the expression of cyclin-dependent kinases (CDKs) with theeffects of all-trans retinoic acid (ATRA) on the proliferation of HL-cells. HL-60 cells were treated...This study was designed to investigate the relationship of the expression of cyclin-dependent kinases (CDKs) with theeffects of all-trans retinoic acid (ATRA) on the proliferation of HL-cells. HL-60 cells were treated with ATRA for 1-4 d. Then thecapacity of DNA Synthesis was evaluated with 3H-TdR incorporation and the expression of cyclin E, cyclin D, CDK2 and CDK4protein determined with immunocytochemical staining. In addition, the expression Of CDC2, CDK2 and CDK4 mRNA was deter-mined with in situ hybridization. It was found that ATRA suppressed the proliferation of HL-60 cells and decreased their capacityof DNA synthesis to result in a down-regulation of the expression of cyclin E, cyclin D and CDC2 without comcomittant suppressionon the expression of CDK2 and CDK4. It is concluded that the effects of ATRA on the proliferation of HL-60 cells may be relatedto the down-regulation of the expression of cyclin E, cyclin D and CDC2.展开更多
Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in respon...Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in response to heat stress in the cryptorchid testis, and to investigate a possible relation to Sertoli cell dedifferentiation. Methods: Immunohistochemistry and western blot were used to examine the expression and activation of ERK1/2, p38 and JNK in the cryptorchid testis at various stages after experimental cryptorchidism. Results: The abdominal temperature did not obviously change the total ERK1/2 expression but significantly activated phospho-ERK1/2 in the Sertoli cells of the cryptorchid testis. Heat stress increased total JNK expression in the Sertoli cells of the cryptorchid testis but did not activate phospho-JNK. Neither total p38 nor phospho-p38 was induced by heat stress in the Sertoli cells of the cryptorchid testis. Changes in the spatiotemporal expression of cytokeratin 18 (CK18), a marker of immature or undifferentiated Sertoli cells, were induced in the cryptorchid testis in a pattern similar to the activation of ERK1/2. Condusion: The activation of ERK1/2 in the testis may be related to dedifferentiation of Sertoli cells under heat stress induced by experimental cryptorchidism.展开更多
BACKGROUND: The p25-activated cyclin-dependent protein kinase 5 (Cdk5) may induce neuronal cell death and cause the development of dementia following cerebral ischemia and reperfusion. OBJECTIVE: To observe change...BACKGROUND: The p25-activated cyclin-dependent protein kinase 5 (Cdk5) may induce neuronal cell death and cause the development of dementia following cerebral ischemia and reperfusion. OBJECTIVE: To observe changes in the expression of Cdk5 and p25 in hippocampal tissue of vascular dementia mice at different time points following cerebral ischemia and reperfusion. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed in the clinical trial center of Hebei Provincial People's Hospital between September 2007 and October 2008. MATERIALS: Cdk5 rabbit anti-mouse polyclonal antibody, p35 rabbit anti-mouse polyclonal antibody, and β-actin mouse monoclonal antibody were purchased from Santa Cruz Biotechnology, Inc., USA; horseradish peroxidase-labeled goat anti-rabbit IgG and horseradish peroxidase-labeled goat anti-mice IgG were offered by Beijing Zhongshan Geldenbridye Biotechnology Co.,Ltd., China; the protein quantitative kit was produced by Applygen Gene Technology Corp., Beijing, China; cDNA reverse transcription and PCR amplification reagents were products of TianGen& Biotech (Beijing) Co.,Ltd., China. METHODS: One hundred and sixty male Kunming mice were randomly divided into two groups: a sham-operated group (n = 65) and a model group (n = 95). Vascular dementia was induced with three periods of transient ischemia and reperfusion of the bilateral common carotid arteries. In the sham-operated group, the bilateral common carotid arteries were not blocked. MAIN OUTCOME MEASURES: Behavioral tests were done at four and six weeks post surgery. Pathological changes in the hippocampal CA1 region were observed with hematoxylin-eosin staining Cdk5 mRNA expression was examined by RT-PCR, and Western blots were used to evaluate Cdk5 and p25 expression. Learning and memory performance were assayed using the Morris water maze. RESULTS: Vascular dementia reduced learning and memory performance at 4 and 6 weeks post surgery. Vascular dementia also caused severe, time-dependent neuronal damage and death in the hippocampal CA1 region. Dementia induction also increased mRNA and protein expression of Cdk5 and p25 at both 4 and 6 weeks after surgery. CONCLUSION: Cdk5/p25 is involved in the development of vascular dementia in mice following cerebral ischemia and reperfusion.展开更多
Objective To investigate the role of extracellular signal-regulated kinase1/2(ERK1/2) pathway in the regulation of aquaporin 4(AQP4) expression in cultured astrocytes after scratch-injury. Methods The scratch-inju...Objective To investigate the role of extracellular signal-regulated kinase1/2(ERK1/2) pathway in the regulation of aquaporin 4(AQP4) expression in cultured astrocytes after scratch-injury. Methods The scratch-injury model was produced in cultured astrocytes of rat by a 10-μL plastic pipette tip. The morphological changes of astrocytes and lactate dehydrogenase(LDH) leakages were observed to assess the degree of scratch-injury. AQP4 expression was detected by immunofluorescence staining and Western blot, and phosphorylated-ERK1/2(p-ERK1/2) expression was determined by Western blot. To explore the effect of ERK1/2 pathway on AQP4 expression in scratch-injured astrocytes, 10 μmol/L U0126(ERK1/2 inhibitor) was incubated in the medium at 30 min before the scratch-injury in some groups. Results Increases in LDH leakage were observed at 1, 12, and 24 h after scratch-injury, and AQP4 expression was reduced simultaneously. Decrease in AQP4 expression was associated with a significant increase in ERK1/2 activation. Furthermore, pretreatment with U0126 blocked both ERK1/2 activation and decrease in AQP4 expression induced by scratch-injury. Conclusion These results indicate that ERK1/2 pathway down-regulates AQP4 expression in scratch-injured astrocytes, and ERK1/2 pathway might be a novel therapeutic target in reversing the effects of astrocytes that contribute to traumatic brain edema.展开更多
BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its d...BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.展开更多
BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM...BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.展开更多
Invasive breast carcinoma(BRCA)is associated with poor prognosis and high risk of mortality.Therefore,it is critical to identify novel biomarkers for the prognostic assessment of BRCA.Methods:The expression data of po...Invasive breast carcinoma(BRCA)is associated with poor prognosis and high risk of mortality.Therefore,it is critical to identify novel biomarkers for the prognostic assessment of BRCA.Methods:The expression data of polo-like kinase 1(PLK1)in BRCA and the corresponding clinical information were extracted from TCGA and GEO databases.PLK1 expression was validated in diverse breast cancer cell lines by quantitative real-time polymerase chain reaction(qRT-PCR)and western blotting.Single sample gene set enrichment analysis(ssGSEA)was performed to evaluate immune infiltration in the BRCA microenvironment,and the random forest(RF)and support vector machine(SVM)algorithms were used to screen for the hub infiltrating cells and calculate the immunophenoscore(IPS).The RF algorithm and COX regression model were applied to calculate survival risk scores based on the PLK1 expression and immune cell infiltration.Finally,a prognostic nomogram was constructed with the risk score and pathological stage,and its clinical potential was evaluated by plotting calibration charts and DCA curves.The application of the nomogram was further validated in an immunotherapy cohort.Results:PLK1 expression was significantly higher in the tumor samples in TCGA-BRCA cohort.Furthermore,PLK1 expression level,age and stage were identified as independent prognostic factors of BRCA.While the IPS was unaffected by PLK1 expression,the TMB and MATH scores were higher in the PLK1-high group,and the TIDE scores were higher for the PLK1-low patients.We also identified 6 immune cell types with high infiltration,along with 11 immune cell types with low infiltration in the PLK1-high tumors.A risk score was devised using PLK1 expression and hub immune cells,which predicted the prognosis of BRCA patients.In addition,a nomogram was constructed based on the risk score and pathological staging,and showed good predictive performance.Conclusions:PLK1 expression and immune cell infiltration can predict post-immunotherapy prognosis of BRCA patients.展开更多
BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and...BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and BC research status and PGK1 expression and mecha-nism differences among TNBC,non-TNBC,and normal breast tissue.METHODS PGK1 and BC related literature was downloaded from Web of Science Core Co-llection Core Collection.Publication counts,key-word frequency,cooperation networks,and theme trends were analyzed.Normal breast,TNBC,and non-TNBC mRNA data were gathered,and differentially expressed genes obtained.Area under the summary receiver operating characteristic curves,sensitivity and specificity of PGK1 expression were determined.Kaplan Meier revealed PGK1’s prognostic implication.PGK1 co-expressed genes were explored,and Gene Onto-logy,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology applied.Protein-protein interaction networks were constructed.Hub genes identified.RESULTS PGK1 and BC related publications have surged since 2020,with China leading the way.The most frequent keyword was“Expression”.Collaborative networks were found among co-citations,countries,institutions,and authors.PGK1 expression and BC progression were research hotspots,and PGK1 expression and BC survival were research frontiers.In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets,PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases[standardized mean differences(SMD):0.85,95%confidence interval(95%CI):0.54-1.16,I²=86%,P<0.001].PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases(SMD:0.25,95%CI:0.03-0.47,I²=91%,P=0.02).Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group(hazard ratio:1.282,P=0.023).PGK1 co-expressed genes were concentrated in ATP metabolic process,HIF-1 signaling,and glycolysis/gluconeogenesis pathways.CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field.PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.展开更多
Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4)...Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.展开更多
BACKGROUND: The onset of focal cerebral ischemia activates extracellular signal-regulated kinases 1 and 2, regulates cell cycle, promotes cell proliferation and differentiation, and affects the normal stage and funct...BACKGROUND: The onset of focal cerebral ischemia activates extracellular signal-regulated kinases 1 and 2, regulates cell cycle, promotes cell proliferation and differentiation, and affects the normal stage and function of brain cells. OBJECTIVE: To observe the effects of electroacupuncture at the Ren channel on extracellular signal-regulated kinases 1/2 expression in the lateral cerebral ventricle wall of rats with focal cerebral ischemia. The effects were analyzed at different time points after intervention. DESIGN: Randomized controlled study. SETTING: Department of Anatomy, Sun Yat-Sen University. MATERIALS: A total of 60 healthy adult male Wistar rats weighing (250±10) g were provided by the Experimental Animal Center, Medical College of Sun Yat-Sen University. The animal experiment was conducted with confirmed consent by the local ethics committee. The GB6805-Ⅱ electric acupuncture apparatus was provided by Shanghai Medical Equipment High-techno Company. METHODS: The experiment was performed at the Laboratory of Anatomy, Sun Yat-Sen University, from February to July 2007. All experimental animals were randomly divided into the following groups: normal group (n = 6), sham operation group (n = 18), model group (n = 18), and electroacupuncture group (n = 18). Middle cerebral artery occlusion (MCAO) was performed in the model group and electroacupuncture group. Zea Longa's grading standard was used to assess neurological impairment after reperfusion; animals whose grades were between l and 4 were included in this study. The normal control group was not exposed to MCAO. In sham operation animals, the right common carotid artery (CCA) was isolated, and the external carotid artery (ECA) was damaged, but no embolism was induced. The electroacupuncture group was given acupuncture on the second day after surgery. The acupoint locations were chosen according to Experimental Acupuncture (People's Publishing House; 1997; First Edition). The Chengjiang, Qihai, and Guanyuan acupoints were labeled and connected to a G6805 electroacupuncture apparatus with sparse-dense waves (sparse waves were 30 Hz, dense waves were 100 Hz), with a frequency of 6-15 V. The duration was 20 minutes. Two days after surgery, the model and sham operation groups were placed with their backs on the operating table, but they received no acupuncture. However, the normal group received acupuncture. The experimental animals under anesthesia were sacrificed on days 7, 14, and 28 post-surgery. Western blot analysis was used to measure expression of extracellular signal-regulated kinases 1/2 in the inferior region of the lateral cerebral ventricle wall. Expression was measured in the normal group at time points corresponding to the sham operation group. MAIN OUTCOME MEASURES: Expression of extracellular signal-regulated kinases 1/2 in the inferior region of the lateral cerebral ventricle wall at different time points after intervention. RESULTS: All 60 rats were included in the final analysis, without any loss. Seven days after MCAO, there was no significant difference in extracellular signal-regulated kinases 1/2 expression in the electroacupuncture group compared to the model group (P 〉 0.05). However, extracellular signal-regulated kinases 1/2 expression significantly increased in the model group at 14 and 28 days after treatment (P 〈 0.05). CONCLUSION: Electroacupuncture at the Ren channel can enhance extracellular signal-regulated kinasesl/2 expression in the inferior region of the lateral cerebral ventricle wall of rats with focal cerebral ischemia. However, this effect is not apparent until 14 days after electroacupuncture intervention.展开更多
Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and sur...Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. S1P is generated by phosphorylation of sphingosine catalyzed by sphingosine kinase-1 (SPHK1). The purpose of this study is to explore the roles of S1P, S1P receptors, and sphingosine kinases in malignant musculoskeletal tumors. Twenty-one tumor samples (7 liposarcomas, 3 chondrosarcomas, 6 osteosarcomas, 5 MFH) obtained at open biopsy, and four human MFH cell lines (Nara H, Nara F, TNMY1, GBS-1) were used. We examined the mRNA expression of S1P receptors by RT-PCR, and the expression levels of SPHK by Real-time PCR. We used 4 MFH cell lines to analyze SPHK1 proteins by Western blotting. SPHK1 siRNA was transfected into MFH cell lines by lipofection method. Cell proliferation (control and transfected with siRNA) was assayed using WST-8 (Cell Counting Kit-8) assay. All high grade malignant tumors expressed S1P1, S1P2, S1P3 receptors, whereas the expression of S1P1 receptor was detected in 50% of low-grade malignant tumors, S1P2 receptor in 30%, and S1P3 in 50%. No statistically significant difference was found in the expression level of SPHK1 between high-grade and low-grade malignant tumors by Real-time PCR. By results of Western blotting, proteins of SPHK1 were expressed in all MFH cell lines. In MFH cell lines, transfection with SPHK1 siRNA oligonucleotides resulted in approximately 50 to 80% suppression of SPHK1 mRNA expression as determined by real-time PCR. Down-regulation of SPHK1 with small interfering RNA significantly reduced SPHK1 protein levels by Western blotting. Knock down of SPHK1 expression significantly decreased cell proliferation of all MFH cells. These results suggest that the expression of S1P receptors may play an important role for cell proliferation and may correlate with histologic grade in malignant bone and soft tissue tumors, and that SPHK1 may be one of essential molecules for cell proliferation in MFH cell lines.展开更多
Recent Background: Development of obesity involves promotion of preadipocyte differrentiation. This study investigated the role that sphingosine kinases (SPHK) and ceramide-derived sphingosine 1-phosphate (S1P) play i...Recent Background: Development of obesity involves promotion of preadipocyte differrentiation. This study investigated the role that sphingosine kinases (SPHK) and ceramide-derived sphingosine 1-phosphate (S1P) play in adipocyte terminal differentiation. Materials and Methods: The mouse 3T3-L1 cell line was used as a model for adipogenesis. Cells were harvested at specific time points after initation of differentiation, and SPHK activity was measured. 3T3-L1 cells were treated with S1P and expression of early adipogenesis transcription markers was measured by real time PCR. The expression of S1P-receptors (S1PRs) during differentiation was measured. Results: SPHK activity is induced when 3T3-L1 cells are treated with insulin, dexamethasone, and isobutylmethylxanthine to induce differentiation. SPHK1 is active in preadipocytes and early in the differentiation process. Both SPHK1 and SPHK2 isozymes contribute to activity in differentiated adipocytes. Inhibition of SPHK1 attenuates adipocyte differentiation;however, extracellular S1P does not rescue the effect of SPHK1 inhibition on adipogenesis. Although treatment of preadipocytes with S1P induced message expression of the early adipogenesis transcription factor CC AAT/ binding proteinalpha, continued treatment did not fully support the development of differentiated adipocytes. Sphingosine 1-phosphate receptors (S1PRs) are expressed in preadipocytes and message expression declines markedly during adipocyte differentiation. Conclusion: These results demonstrate that the contribution of SPHK and S1P to adipogenesis is mediated primarily through biphasic activation of SPHK1 and 2 with extracellular S1P and S1PRs playing little role during preadipocyte differentiation.展开更多
AIM: To examine the pathway related to the IL-1β induced activation of mitogen-activated protein (MAP) kinases in cat esophageal smooth muscle cells. METHODS: Culture of the esophageal smooth muscle cells from ca...AIM: To examine the pathway related to the IL-1β induced activation of mitogen-activated protein (MAP) kinases in cat esophageal smooth muscle cells. METHODS: Culture of the esophageal smooth muscle cells from cat was prepared. Specific inhibitors were treated before applying the IL-β3. Western blot analysis was performed to detect the expressions of COX, iNOS and MAP kinases. RESULTS: In the primary cultured cells, although IL-β3 failed to upregulate the COX and iNOS levels, the levels of the phosphorylated forms of 1344142 HAP kinase and p38 MAP kinase increased in both concentration- and time-dependent manner, of which the level of activation reached a maximum within 3 and 18 h, respectively. The pertussis toxin reduced the level of p44/42 MAP kinase phosphorylation. Tyrphostin 51 and genistein also inhibited this activation. Neomycin decreased the density of the p44/42 HAP kinase band to the basal level. Phosphokinase C (PKC) was found to play a mediating role in the IL-1β-induced p44/42 MAP kinase activity. In contrast, the activation of p38 MAP kinase was inhibited only by a pretreatment with forskolin, and was unaffected by the other compounds. CONCLUSION: Based on these results, IL-1β-induced p44/42 MAP kinase activation is mediated by the Gi protein, tyrosine kinase, phospholipase C (PLC) and PKC. The pathway for p38 MAP kinase phosphorylation is different from that of p44/42 MAP kinase, suggesting that it plays a different role in the cellular response to IL- 1β.展开更多
BACKGROUND Pathological complete response(pCR) is rare in hormone receptor-positive(HR+)HER2-negative breast cancer(BC) treated with either endocrine therapy(ET) or chemotherapy. Radical resection of locoregional rela...BACKGROUND Pathological complete response(pCR) is rare in hormone receptor-positive(HR+)HER2-negative breast cancer(BC) treated with either endocrine therapy(ET) or chemotherapy. Radical resection of locoregional relapse, although potentially curative in some cases, is challenging when the tumor invades critical structures.The oral cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ET has obtained a significant increase in objective response rates and progression-free survival in patients with advanced BC and is now being evaluated in the neoadjuvant setting. We present a clinical case of a patient with an inoperable locoregional relapse of HR+ HER2-negative BC who experienced p CR after treatment with palbociclib.CASE SUMMARY We report the clinical case of a 60-year-old patient who presented with an inoperable locoregional relapse of HR+, HER2-negative BC 10 years after the diagnosis of the primary tumor. During a routine follow-up visit, breast magnetic resonance imaging and positron emission tomography/computed tomography revealed a 4-cm lesion in the right subclavicular region, infiltrating the chest wall and extending to the subclavian vessels, but without bone or visceral involvement. Treatment was begun with palbociclib plus letrozole, converting the disease to operability over a period of 6 mo. Surgery was performed and a p CR achieved. Of note, during treatment the patient experienced a very uncommon toxicity characterized by burning tongue and glossodynia associated with dysgeusia, paresthesia, dysesthesia, and xerostomia. A reduction in the dose of palbociclib did not provide relief and treatment with the inhibitor was thus discontinued, resolving the tongue symptoms. Laboratory exams were unremarkable. Given that this was a late relapse, the tumor was classified asendocrine-sensitive, a condition associated with high sensitivity to palbociclib.CONCLUSION This case highlights the potential of the cyclin-dependent kinase 4/6 inhibitor plus ET combination to achieve pCR in locoregional relapse of BC, enabling surgical resection of a lesion initially considered inoperable.展开更多
基金the National Natural Science Foundation of China,No.39670287the Scientific Research Foundation for Doctorate Education,State Education Commission.No.96026530
文摘AIM To study the molecular mechanisms ofretinoic acid(RA)on proliferation andexpression of cyclin-dependent kinase inhibitors(CKI),i.e.p16,p21 and p27 in cultured rathepatic stellate cells(HSC)stimulated withtransforming growth factor beta 1(TGF-β1).METHODS HSC were isolated from healthy ratlivers and cultured.After stimulated with1 mg/L TGF-β1,subcultured HSC were treatedwith or without 1 nmol/L RA.MTT assay,immunocytochemistry(ICC)for p16,p21,p27and α-smooth muscle actin(α-SMA)protein,insitu hybridization(ISH)for retinoic acidreceptor beta 2(RAR-β2)and p16,p21 and p27mRNA and quantitative image analysis(partially)were performed.RESULTS RA inhibited HSC proliferation(41.50%,P【0.05),decreased the protein levelof α-SMA(55.09%,P【0.05),and induced HSCto express RAR-β2 mRNA.In addition,RAincreased the protein level of p16(218.75%,P【0.05)and induced p21 protein expression;meanwhile,p27 was undetectable by ICC in bothcontrol and RA-treated HSC.However,RA hadno influence on the mRNA levels of p16,p21 orp27 as determined by ISH.CONCLISION Up-regulation of p16 and p21 on post-transcriptional level may contribule, in part to RA inhibition of TGF-β1-initiated rat HSC activation in vitro.
文摘It is known that human papillomavirus (HPV) infection can cause squamous cell neoplasms at several sites, such as cervix uteri carcinoma and oral squamous carcinoma. There is little information on the expression of HPV and its predictive markers in tumours of the major and minor salivary glands of the head and neck. We therefore assessed oral salivary gland neoplasms to identify associations between HPV and infection-related epidermal growth factor receptor (EGFR), cyclin-dependent kinase inhibitor 2A (CDKN2A/p16) and tumour protein p53 (TP53). Formalin-fixed, paraffin-embedded tissue samples from oral salivary gland carcinomas (n=51) and benign tumours (n=26) were analysed by polymerase chain reaction (PCR) analysis for several HPV species, including high-risk types 16 and 18. Evaluation of EGFR, CDKN2A, TP53 and cytomegalovirus (CMV) was performed by immunohistochemistry. Epstein-Barr virus (EBV) was evaluated by EBV-encoded RNA in situ hybridisation. We demonstrated that salivary gland tumours are not associated with HPV infection. The expression of EGFR, CDKN2A and TP53 may be associated with tumour pathology but is not induced by HPV. CMV and EBV were not detectable. In contrast to oral squamous cell carcinomas, HPV, CMV and EBV infections are not associated with malignant or benign neoplastic lesions of the salivary glands.
基金supported by the National Natural Science Foundation of China(No.81874148 and No.82203142).
文摘Objective Kidney renal clear cell carcinoma(KIRC)is a common renal malignancy that has a poor prognosis.As a member of the F box family,cyclin F(CCNF)plays an important regulatory role in normal tissues and tumors.However,the underlying mechanism by which CCNF promotes KIRC proliferation still remains unclear.Methods Bioinformatics methods were used to analyze The Cancer Genome Atlas(TCGA)database to obtain gene expression and clinical prognosis data.The CCK8 assay,EdU assay,and xenograft assay were used to detect cell proliferation.The cell senescence and potential mechanism were assessed by SA-β-gal staining,Western blotting,as well as ELISA.Results Our data showed that CCNF was highly expressed in KIRC patients.Meanwhile,downregulation of CCNF inhibited cell proliferation in vivo and in vitro.Further studies showed that the reduction of CCNF promoted cell senescence by decreasing cyclin-dependent kinase 1(CDK1),increasing the proinflammatory factors interleukin(IL)-6 and IL-8,and then enhancing the expression of p21 and p53.Conclusion We propose that the high expression of CCNF in KIRC may play a key role in tumorigenesis by regulating cell senescence.Therefore,CCNF shows promise as a new biomarker to predict the clinical prognosis of KIRC patients and as an effective therapeutic target.
文摘OBJECTIVE Previous studies have demonstrated acetylcholine muscarinic 4(M4) receptor regulates DARPP-32 phosphorylation at Thr75 in isolated medium spiny neurons(MSNs),indicating antagonistic mechanism with D1 dependent signal cascade,but the exact molecular mechanisms remain unclearly.In this study,we investigated the roles of M4 receptor in modulation D1 dependent signal to integrate striatal DA inputs in isolated MSNs.METHODS(1)Lentivirus technology was employed to genetically knock down the M4 receptor of MSNs;(2) Apomorphine(APO),acts as a dopamine receptor agonist,while SCH23390,acts as a selective antagonist for D1,were used to study the pharmacologically profiles with D1 receptor stimulation or blockade,respectively.Then the no subtype-selective muscarinic agonist oxotremorine M(OX) were used to show that mAchRs activation,in order to dissect the particular function of M4,a selective M4 antagonist,MT3 was used;(3) Intracellular cAMP production of MSNs was measured by using time resolved fluorescence resonance energy transfer detection method;(4) Laser confocal was used to explore the expression of M4 and D1 in MSNs;(5) Immunofluorescence cytochemistry and Western blotting were used to confirm the alteration of signaling molecular including P-CREB,DARPP-32 P-Thr34,DARPP-32 P-Thr75,cyclin-dependent kinase 5(CDK5) as wel as p25/35,which are involved in DA-dependent signaling modulations.RESULTS Firstly,TR-FRET assay revealed APO(10-2 mol·L^(-1))significantly increased the level of intracellular cAMP(vs control,n=3,P<0.01),also Western blotting results showed that APO(10-6 mol · L^(-1))increased DARPP-32 Thr34 phosphorylation(vs control,n=3,P<0.01),and these effect were reversed by D1 receptor antagonist SCH23390(vs APO,n=3,P<0.01).Interestingly,we confirmed that OX(10-6 mol · L^(-1)) down-regulated APO-induced DARPP-32 Thr34 phosphorylation(vs APO,n=3,P<0.01),due to its effects on DARPP-32 phosphorylation at Thr75.The results presented the antagonistic mechanism of mAchRs stimulation with D1 dependent signal cascade in MSNs.Meanwhile,OX(10-7,10-6 and10^(-5) mol·L^(-1)) stimulated DARPP-32 phosphorylation at Thr75,and simultaneously up regulated P25/35 and CDK5 activity(vs control,n=3,P<0.01) by using Western blotting assay.Furthermore,roscovitine(10^(-5) mol · L^(-1)),acts as a CDK5 inhibitor,suppressed CDK5 activity(vs control,n=10,P<0.01),and fully inhibited OX-induced DARPP-32 Thr75 phosphorylation(vs OX,n=10,P<0.01).More important,pretreated with roscovitine(10^(-5) mol·L^(-1)),the effect of APO on DARPP-32 Thr34 phosphorylation was potentiated(vs APO,n=3,P<0.05).The result presented CDK5 is required in suppression of APO on DARPP-32 Thr34 phosphorylation mediated through mAchRs stimulation.In addition,laser confocal results showed that the CDK5 up-regulation was mostly confined to MSNs co-expressing M4,which means that M4 participated in CDK5-mediated phosphorylation of DARPP-32 at Thr75.Consistently,immunofluorescence and Western blotting results confirmed that both genetic knockdown and pharmacologic inhibition of M4 receptors with MT3(10-7 mol · L^(-1)) down-regulated the OX-induced the expression of CDK5(vs OX,n=3,P<0.01) and P25/35(vs OX,n=3,P<0.01)in isolated MSNs.CONCLUSION M4 receptor may play an important role in antagonistic regulation D1 dependent signaling,in which CDK5 is required for suppressing D1-DARPP-32 Thr34 phosphorylation in isolated medium spiny neurons.
文摘This study was designed to investigate the relationship of the expression of cyclin-dependent kinases (CDKs) with theeffects of all-trans retinoic acid (ATRA) on the proliferation of HL-cells. HL-60 cells were treated with ATRA for 1-4 d. Then thecapacity of DNA Synthesis was evaluated with 3H-TdR incorporation and the expression of cyclin E, cyclin D, CDK2 and CDK4protein determined with immunocytochemical staining. In addition, the expression Of CDC2, CDK2 and CDK4 mRNA was deter-mined with in situ hybridization. It was found that ATRA suppressed the proliferation of HL-60 cells and decreased their capacityof DNA synthesis to result in a down-regulation of the expression of cyclin E, cyclin D and CDC2 without comcomittant suppressionon the expression of CDK2 and CDK4. It is concluded that the effects of ATRA on the proliferation of HL-60 cells may be relatedto the down-regulation of the expression of cyclin E, cyclin D and CDC2.
基金Acknowledgment This study was supported by the National Natural Science Foundation of China (30230190), the National Basic Science Research and Development Project (973) (G1999055901) and the Chinese Academy of Sciences (CAS) Knowledge Innovation Program (KSCX-2-SW-201).
文摘Aim: To assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/ 2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in response to heat stress in the cryptorchid testis, and to investigate a possible relation to Sertoli cell dedifferentiation. Methods: Immunohistochemistry and western blot were used to examine the expression and activation of ERK1/2, p38 and JNK in the cryptorchid testis at various stages after experimental cryptorchidism. Results: The abdominal temperature did not obviously change the total ERK1/2 expression but significantly activated phospho-ERK1/2 in the Sertoli cells of the cryptorchid testis. Heat stress increased total JNK expression in the Sertoli cells of the cryptorchid testis but did not activate phospho-JNK. Neither total p38 nor phospho-p38 was induced by heat stress in the Sertoli cells of the cryptorchid testis. Changes in the spatiotemporal expression of cytokeratin 18 (CK18), a marker of immature or undifferentiated Sertoli cells, were induced in the cryptorchid testis in a pattern similar to the activation of ERK1/2. Condusion: The activation of ERK1/2 in the testis may be related to dedifferentiation of Sertoli cells under heat stress induced by experimental cryptorchidism.
文摘BACKGROUND: The p25-activated cyclin-dependent protein kinase 5 (Cdk5) may induce neuronal cell death and cause the development of dementia following cerebral ischemia and reperfusion. OBJECTIVE: To observe changes in the expression of Cdk5 and p25 in hippocampal tissue of vascular dementia mice at different time points following cerebral ischemia and reperfusion. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed in the clinical trial center of Hebei Provincial People's Hospital between September 2007 and October 2008. MATERIALS: Cdk5 rabbit anti-mouse polyclonal antibody, p35 rabbit anti-mouse polyclonal antibody, and β-actin mouse monoclonal antibody were purchased from Santa Cruz Biotechnology, Inc., USA; horseradish peroxidase-labeled goat anti-rabbit IgG and horseradish peroxidase-labeled goat anti-mice IgG were offered by Beijing Zhongshan Geldenbridye Biotechnology Co.,Ltd., China; the protein quantitative kit was produced by Applygen Gene Technology Corp., Beijing, China; cDNA reverse transcription and PCR amplification reagents were products of TianGen& Biotech (Beijing) Co.,Ltd., China. METHODS: One hundred and sixty male Kunming mice were randomly divided into two groups: a sham-operated group (n = 65) and a model group (n = 95). Vascular dementia was induced with three periods of transient ischemia and reperfusion of the bilateral common carotid arteries. In the sham-operated group, the bilateral common carotid arteries were not blocked. MAIN OUTCOME MEASURES: Behavioral tests were done at four and six weeks post surgery. Pathological changes in the hippocampal CA1 region were observed with hematoxylin-eosin staining Cdk5 mRNA expression was examined by RT-PCR, and Western blots were used to evaluate Cdk5 and p25 expression. Learning and memory performance were assayed using the Morris water maze. RESULTS: Vascular dementia reduced learning and memory performance at 4 and 6 weeks post surgery. Vascular dementia also caused severe, time-dependent neuronal damage and death in the hippocampal CA1 region. Dementia induction also increased mRNA and protein expression of Cdk5 and p25 at both 4 and 6 weeks after surgery. CONCLUSION: Cdk5/p25 is involved in the development of vascular dementia in mice following cerebral ischemia and reperfusion.
基金supported by the National Natural Science Foundation of China,No.81271286 to YUAN Fang and No.81228009 to YANG Shao Hua
文摘Objective To investigate the role of extracellular signal-regulated kinase1/2(ERK1/2) pathway in the regulation of aquaporin 4(AQP4) expression in cultured astrocytes after scratch-injury. Methods The scratch-injury model was produced in cultured astrocytes of rat by a 10-μL plastic pipette tip. The morphological changes of astrocytes and lactate dehydrogenase(LDH) leakages were observed to assess the degree of scratch-injury. AQP4 expression was detected by immunofluorescence staining and Western blot, and phosphorylated-ERK1/2(p-ERK1/2) expression was determined by Western blot. To explore the effect of ERK1/2 pathway on AQP4 expression in scratch-injured astrocytes, 10 μmol/L U0126(ERK1/2 inhibitor) was incubated in the medium at 30 min before the scratch-injury in some groups. Results Increases in LDH leakage were observed at 1, 12, and 24 h after scratch-injury, and AQP4 expression was reduced simultaneously. Decrease in AQP4 expression was associated with a significant increase in ERK1/2 activation. Furthermore, pretreatment with U0126 blocked both ERK1/2 activation and decrease in AQP4 expression induced by scratch-injury. Conclusion These results indicate that ERK1/2 pathway down-regulates AQP4 expression in scratch-injured astrocytes, and ERK1/2 pathway might be a novel therapeutic target in reversing the effects of astrocytes that contribute to traumatic brain edema.
基金Supported by National Natural Science Foundation of China,No.82260211Key Research and Development Project in Jiangxi Province,No.20203BBG73058Chinese Medicine Science and Technology Project in Jiangxi Province,No.2020A0166.
文摘BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.
基金This study was reviewed and approved by the Experimental Animal Ethics Committee of the First Affiliated Hospital of Guangxi Medical University(Approval No.2023-E386-01).
文摘BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC.
基金funded by the Natural Science Foundation of Higher Education Institutions of Auhui Province(Grant No.KJ2021A0352)the Research Fund Project of Anhui Medical University(Grant No.2020xkj236)Applied Medicine Research Project of Hefei Health Commission(Grant No.HWKJ2019-172-14).
文摘Invasive breast carcinoma(BRCA)is associated with poor prognosis and high risk of mortality.Therefore,it is critical to identify novel biomarkers for the prognostic assessment of BRCA.Methods:The expression data of polo-like kinase 1(PLK1)in BRCA and the corresponding clinical information were extracted from TCGA and GEO databases.PLK1 expression was validated in diverse breast cancer cell lines by quantitative real-time polymerase chain reaction(qRT-PCR)and western blotting.Single sample gene set enrichment analysis(ssGSEA)was performed to evaluate immune infiltration in the BRCA microenvironment,and the random forest(RF)and support vector machine(SVM)algorithms were used to screen for the hub infiltrating cells and calculate the immunophenoscore(IPS).The RF algorithm and COX regression model were applied to calculate survival risk scores based on the PLK1 expression and immune cell infiltration.Finally,a prognostic nomogram was constructed with the risk score and pathological stage,and its clinical potential was evaluated by plotting calibration charts and DCA curves.The application of the nomogram was further validated in an immunotherapy cohort.Results:PLK1 expression was significantly higher in the tumor samples in TCGA-BRCA cohort.Furthermore,PLK1 expression level,age and stage were identified as independent prognostic factors of BRCA.While the IPS was unaffected by PLK1 expression,the TMB and MATH scores were higher in the PLK1-high group,and the TIDE scores were higher for the PLK1-low patients.We also identified 6 immune cell types with high infiltration,along with 11 immune cell types with low infiltration in the PLK1-high tumors.A risk score was devised using PLK1 expression and hub immune cells,which predicted the prognosis of BRCA patients.In addition,a nomogram was constructed based on the risk score and pathological staging,and showed good predictive performance.Conclusions:PLK1 expression and immune cell infiltration can predict post-immunotherapy prognosis of BRCA patients.
基金Supported by the Guangxi Zhuang Autonomous Region Health Commission Scientific Research Project,No.Z-A20220530.
文摘BACKGROUND Phosphoglycerate kinase 1(PGK1)has been identified as a possible biomarker for breast cancer(BC)and may play a role in the development and advancement of triple-negative BC(TNBC).AIM To explore the PGK1 and BC research status and PGK1 expression and mecha-nism differences among TNBC,non-TNBC,and normal breast tissue.METHODS PGK1 and BC related literature was downloaded from Web of Science Core Co-llection Core Collection.Publication counts,key-word frequency,cooperation networks,and theme trends were analyzed.Normal breast,TNBC,and non-TNBC mRNA data were gathered,and differentially expressed genes obtained.Area under the summary receiver operating characteristic curves,sensitivity and specificity of PGK1 expression were determined.Kaplan Meier revealed PGK1’s prognostic implication.PGK1 co-expressed genes were explored,and Gene Onto-logy,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology applied.Protein-protein interaction networks were constructed.Hub genes identified.RESULTS PGK1 and BC related publications have surged since 2020,with China leading the way.The most frequent keyword was“Expression”.Collaborative networks were found among co-citations,countries,institutions,and authors.PGK1 expression and BC progression were research hotspots,and PGK1 expression and BC survival were research frontiers.In 16 TNBC vs non-cancerous breast and 15 TNBC vs non-TNBC datasets,PGK1 mRNA levels were higher in 1159 TNBC than 1205 non-cancerous breast cases[standardized mean differences(SMD):0.85,95%confidence interval(95%CI):0.54-1.16,I²=86%,P<0.001].PGK1 expression was higher in 1520 TNBC than 7072 non-TNBC cases(SMD:0.25,95%CI:0.03-0.47,I²=91%,P=0.02).Recurrence free survival was lower in PGK1-high-expression than PGK1-low-expression group(hazard ratio:1.282,P=0.023).PGK1 co-expressed genes were concentrated in ATP metabolic process,HIF-1 signaling,and glycolysis/gluconeogenesis pathways.CONCLUSION PGK1 expression is a research hotspot and frontier direction in the BC field.PGK1 may play a strong role in promoting cancer in TNBC by mediating metabolism and HIF-1 signaling pathways.
基金This work was supported by grants from the National Natural Science Foundation of China(No.30370142)the.National Special Key Project on Functional Genomics and Biochip of China(No.2002AA2Z1002)the Project sponsored by the Scientific Research Foundation for the Returned Oversea Chinese Scholars,State Education Ministry.
文摘Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K) plays an important role in signal transduction in animal cellsby phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4). Both IP3 and IP4 arecritical second messengers which regulate calcium (Ca2+) homeostasis. Mammalian IP3Ks are involved in many biologicalprocesses, including brain development, memory, learning and so on. It is widely reported that Ca2+ is a canonicalsecond messenger in higher plants. Therefore, plant IP3K should also play a crucial role in plant development. Recently,we reported the identification of plant IP3K gene (AtIpk2β/AtIP3K) from Arabidopsis thaliana and its characterization.Here, we summarize the molecular cloning, biochemical properties and biological functions of IP3Ks from animal, yeastand plant. This review also discusses potential functions of IP3Ks in signaling crosstalk, inositol phosphate metabolism,gene transcriptional control and so on.
基金the National Natural Science Foundation of China, No. 30371808Post-doctor's Project of Guangzhou University of Traditional Chinese Medicine, No.106B3YH0411
文摘BACKGROUND: The onset of focal cerebral ischemia activates extracellular signal-regulated kinases 1 and 2, regulates cell cycle, promotes cell proliferation and differentiation, and affects the normal stage and function of brain cells. OBJECTIVE: To observe the effects of electroacupuncture at the Ren channel on extracellular signal-regulated kinases 1/2 expression in the lateral cerebral ventricle wall of rats with focal cerebral ischemia. The effects were analyzed at different time points after intervention. DESIGN: Randomized controlled study. SETTING: Department of Anatomy, Sun Yat-Sen University. MATERIALS: A total of 60 healthy adult male Wistar rats weighing (250±10) g were provided by the Experimental Animal Center, Medical College of Sun Yat-Sen University. The animal experiment was conducted with confirmed consent by the local ethics committee. The GB6805-Ⅱ electric acupuncture apparatus was provided by Shanghai Medical Equipment High-techno Company. METHODS: The experiment was performed at the Laboratory of Anatomy, Sun Yat-Sen University, from February to July 2007. All experimental animals were randomly divided into the following groups: normal group (n = 6), sham operation group (n = 18), model group (n = 18), and electroacupuncture group (n = 18). Middle cerebral artery occlusion (MCAO) was performed in the model group and electroacupuncture group. Zea Longa's grading standard was used to assess neurological impairment after reperfusion; animals whose grades were between l and 4 were included in this study. The normal control group was not exposed to MCAO. In sham operation animals, the right common carotid artery (CCA) was isolated, and the external carotid artery (ECA) was damaged, but no embolism was induced. The electroacupuncture group was given acupuncture on the second day after surgery. The acupoint locations were chosen according to Experimental Acupuncture (People's Publishing House; 1997; First Edition). The Chengjiang, Qihai, and Guanyuan acupoints were labeled and connected to a G6805 electroacupuncture apparatus with sparse-dense waves (sparse waves were 30 Hz, dense waves were 100 Hz), with a frequency of 6-15 V. The duration was 20 minutes. Two days after surgery, the model and sham operation groups were placed with their backs on the operating table, but they received no acupuncture. However, the normal group received acupuncture. The experimental animals under anesthesia were sacrificed on days 7, 14, and 28 post-surgery. Western blot analysis was used to measure expression of extracellular signal-regulated kinases 1/2 in the inferior region of the lateral cerebral ventricle wall. Expression was measured in the normal group at time points corresponding to the sham operation group. MAIN OUTCOME MEASURES: Expression of extracellular signal-regulated kinases 1/2 in the inferior region of the lateral cerebral ventricle wall at different time points after intervention. RESULTS: All 60 rats were included in the final analysis, without any loss. Seven days after MCAO, there was no significant difference in extracellular signal-regulated kinases 1/2 expression in the electroacupuncture group compared to the model group (P 〉 0.05). However, extracellular signal-regulated kinases 1/2 expression significantly increased in the model group at 14 and 28 days after treatment (P 〈 0.05). CONCLUSION: Electroacupuncture at the Ren channel can enhance extracellular signal-regulated kinasesl/2 expression in the inferior region of the lateral cerebral ventricle wall of rats with focal cerebral ischemia. However, this effect is not apparent until 14 days after electroacupuncture intervention.
文摘Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. S1P is generated by phosphorylation of sphingosine catalyzed by sphingosine kinase-1 (SPHK1). The purpose of this study is to explore the roles of S1P, S1P receptors, and sphingosine kinases in malignant musculoskeletal tumors. Twenty-one tumor samples (7 liposarcomas, 3 chondrosarcomas, 6 osteosarcomas, 5 MFH) obtained at open biopsy, and four human MFH cell lines (Nara H, Nara F, TNMY1, GBS-1) were used. We examined the mRNA expression of S1P receptors by RT-PCR, and the expression levels of SPHK by Real-time PCR. We used 4 MFH cell lines to analyze SPHK1 proteins by Western blotting. SPHK1 siRNA was transfected into MFH cell lines by lipofection method. Cell proliferation (control and transfected with siRNA) was assayed using WST-8 (Cell Counting Kit-8) assay. All high grade malignant tumors expressed S1P1, S1P2, S1P3 receptors, whereas the expression of S1P1 receptor was detected in 50% of low-grade malignant tumors, S1P2 receptor in 30%, and S1P3 in 50%. No statistically significant difference was found in the expression level of SPHK1 between high-grade and low-grade malignant tumors by Real-time PCR. By results of Western blotting, proteins of SPHK1 were expressed in all MFH cell lines. In MFH cell lines, transfection with SPHK1 siRNA oligonucleotides resulted in approximately 50 to 80% suppression of SPHK1 mRNA expression as determined by real-time PCR. Down-regulation of SPHK1 with small interfering RNA significantly reduced SPHK1 protein levels by Western blotting. Knock down of SPHK1 expression significantly decreased cell proliferation of all MFH cells. These results suggest that the expression of S1P receptors may play an important role for cell proliferation and may correlate with histologic grade in malignant bone and soft tissue tumors, and that SPHK1 may be one of essential molecules for cell proliferation in MFH cell lines.
文摘Recent Background: Development of obesity involves promotion of preadipocyte differrentiation. This study investigated the role that sphingosine kinases (SPHK) and ceramide-derived sphingosine 1-phosphate (S1P) play in adipocyte terminal differentiation. Materials and Methods: The mouse 3T3-L1 cell line was used as a model for adipogenesis. Cells were harvested at specific time points after initation of differentiation, and SPHK activity was measured. 3T3-L1 cells were treated with S1P and expression of early adipogenesis transcription markers was measured by real time PCR. The expression of S1P-receptors (S1PRs) during differentiation was measured. Results: SPHK activity is induced when 3T3-L1 cells are treated with insulin, dexamethasone, and isobutylmethylxanthine to induce differentiation. SPHK1 is active in preadipocytes and early in the differentiation process. Both SPHK1 and SPHK2 isozymes contribute to activity in differentiated adipocytes. Inhibition of SPHK1 attenuates adipocyte differentiation;however, extracellular S1P does not rescue the effect of SPHK1 inhibition on adipogenesis. Although treatment of preadipocytes with S1P induced message expression of the early adipogenesis transcription factor CC AAT/ binding proteinalpha, continued treatment did not fully support the development of differentiated adipocytes. Sphingosine 1-phosphate receptors (S1PRs) are expressed in preadipocytes and message expression declines markedly during adipocyte differentiation. Conclusion: These results demonstrate that the contribution of SPHK and S1P to adipogenesis is mediated primarily through biphasic activation of SPHK1 and 2 with extracellular S1P and S1PRs playing little role during preadipocyte differentiation.
文摘AIM: To examine the pathway related to the IL-1β induced activation of mitogen-activated protein (MAP) kinases in cat esophageal smooth muscle cells. METHODS: Culture of the esophageal smooth muscle cells from cat was prepared. Specific inhibitors were treated before applying the IL-β3. Western blot analysis was performed to detect the expressions of COX, iNOS and MAP kinases. RESULTS: In the primary cultured cells, although IL-β3 failed to upregulate the COX and iNOS levels, the levels of the phosphorylated forms of 1344142 HAP kinase and p38 MAP kinase increased in both concentration- and time-dependent manner, of which the level of activation reached a maximum within 3 and 18 h, respectively. The pertussis toxin reduced the level of p44/42 MAP kinase phosphorylation. Tyrphostin 51 and genistein also inhibited this activation. Neomycin decreased the density of the p44/42 HAP kinase band to the basal level. Phosphokinase C (PKC) was found to play a mediating role in the IL-1β-induced p44/42 MAP kinase activity. In contrast, the activation of p38 MAP kinase was inhibited only by a pretreatment with forskolin, and was unaffected by the other compounds. CONCLUSION: Based on these results, IL-1β-induced p44/42 MAP kinase activation is mediated by the Gi protein, tyrosine kinase, phospholipase C (PLC) and PKC. The pathway for p38 MAP kinase phosphorylation is different from that of p44/42 MAP kinase, suggesting that it plays a different role in the cellular response to IL- 1β.
文摘BACKGROUND Pathological complete response(pCR) is rare in hormone receptor-positive(HR+)HER2-negative breast cancer(BC) treated with either endocrine therapy(ET) or chemotherapy. Radical resection of locoregional relapse, although potentially curative in some cases, is challenging when the tumor invades critical structures.The oral cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ET has obtained a significant increase in objective response rates and progression-free survival in patients with advanced BC and is now being evaluated in the neoadjuvant setting. We present a clinical case of a patient with an inoperable locoregional relapse of HR+ HER2-negative BC who experienced p CR after treatment with palbociclib.CASE SUMMARY We report the clinical case of a 60-year-old patient who presented with an inoperable locoregional relapse of HR+, HER2-negative BC 10 years after the diagnosis of the primary tumor. During a routine follow-up visit, breast magnetic resonance imaging and positron emission tomography/computed tomography revealed a 4-cm lesion in the right subclavicular region, infiltrating the chest wall and extending to the subclavian vessels, but without bone or visceral involvement. Treatment was begun with palbociclib plus letrozole, converting the disease to operability over a period of 6 mo. Surgery was performed and a p CR achieved. Of note, during treatment the patient experienced a very uncommon toxicity characterized by burning tongue and glossodynia associated with dysgeusia, paresthesia, dysesthesia, and xerostomia. A reduction in the dose of palbociclib did not provide relief and treatment with the inhibitor was thus discontinued, resolving the tongue symptoms. Laboratory exams were unremarkable. Given that this was a late relapse, the tumor was classified asendocrine-sensitive, a condition associated with high sensitivity to palbociclib.CONCLUSION This case highlights the potential of the cyclin-dependent kinase 4/6 inhibitor plus ET combination to achieve pCR in locoregional relapse of BC, enabling surgical resection of a lesion initially considered inoperable.