A new cyclometalated platinum complex containing 2, 5-bis(naphthalene-1-yl)-1,3,4-oxadiazole ligand was synthesized and characterized. The UV-Vis absorptions and photoluminescent properties of the ligand and its plati...A new cyclometalated platinum complex containing 2, 5-bis(naphthalene-1-yl)-1,3,4-oxadiazole ligand was synthesized and characterized. The UV-Vis absorptions and photoluminescent properties of the ligand and its platinum complex were investigated. A characteristic metal-ligand charge transfer absorption peak at 439 nm in the UV spectrum and a strong emission peak at 625 nm in the photoluminescence spectrum were observed for this complex in dichloromethane. Cyclic voltammtry (CV) analysis shows that the EHOMO (energy level of the highest occupied molecular orbital) and ELUMO (energy level of the lowest unoccupied molecular orbital) of the platinum complex are about 、5.69 and 、3.25 eV, respectively, indicating that the oxadiazole-based platinum complex has a potential application in electrophosphorescent devices used as a red-emitting material.展开更多
A series of luminescent cyclometalated platinum(II) complexes, (C^N^N)Pt(C≡CR) [HC^N^N=4 (4 tolyl) 6 phenyl 2,2′ bipyridine; R=4 chlorophenyl (1), phenyl (2) and 4 tolyl (3)], were synthesized, and their...A series of luminescent cyclometalated platinum(II) complexes, (C^N^N)Pt(C≡CR) [HC^N^N=4 (4 tolyl) 6 phenyl 2,2′ bipyridine; R=4 chlorophenyl (1), phenyl (2) and 4 tolyl (3)], were synthesized, and their spectroscopic properties have been examined. These complexes are brightly emissive both in fluid solution and in the solid state, attributed to triplet metal to ligand charge transfer ( 3MLCT) state. The excited state energy can be tuned by ancillary acetylide ligands. The emission lifetimes in dichloro^methane solution at room temperature were up to 1 64 μs and the emission quantum yields were in the range of 0 03-0 15.展开更多
Organoplatinum(Ⅱ) compounds have received enormous attention over the past decades due to their square-planar geometry as well as intriguing photo-physical properties.Self-assembly has emerged as an excellent appro...Organoplatinum(Ⅱ) compounds have received enormous attention over the past decades due to their square-planar geometry as well as intriguing photo-physical properties.Self-assembly has emerged as an excellent approach to create well-ordered supramolecular architectures with tunable properties,which underpin the role of solvent-directed approach for the design of functional materials.In this minireview,the recent advances on supramolecular self-assembly of cyclometalated platinum(Ⅱ) complexes have been discussed.During the self-assembly process,non-covalent Pt-Pt and π-π interactions play crucial roles in controlling the structures and functions of the resulting assemblies.展开更多
An elaborated theoretical investigation on the optical and electronic properties of three fluorene-based plati- num(II) and iridium(III) cyclometalated complexes Pt-a, Ir-a and lr-b is reported. The geometric and ...An elaborated theoretical investigation on the optical and electronic properties of three fluorene-based plati- num(II) and iridium(III) cyclometalated complexes Pt-a, Ir-a and lr-b is reported. The geometric and electronic structures of the complexes in the ground state are studied with density functional theory and Hartree Fock ap- proaches, while the lowest triplet excited states are optimized by singles configuration interaction (CIS) methods. At the time-dependent density functional theory (TD-DFT) level, molecular absorption and emission properties were calculated on the basis of optimized ground- and excited-state geometries, respectively. The computational results show that the appearance of triphenylamino (TPA) moiety at the 9-position of fluorene ring favors the hole-creation and leads to red-shifts of absorption and emission spectra. Moreover, Pt-a and Ir-b are nice hole-transporting materials whereas Ir-a has good charge-transfer balance, which render them useful for the realiza- tion of efficient OLEDs (Organic Light-Emitting Diodes).展开更多
基金Project(50473046) supported by the National Natural Science Foundation of ChinaProject(204097) supported by the Science Foundation of the Ministry of Education of China+1 种基金Project(04JJ1002) supported by the Outstanding Youth Foundation of Hunan Province,ChinaProject(06JJ2008) supported by the Natural Science Foundation of Hunan Province,China
文摘A new cyclometalated platinum complex containing 2, 5-bis(naphthalene-1-yl)-1,3,4-oxadiazole ligand was synthesized and characterized. The UV-Vis absorptions and photoluminescent properties of the ligand and its platinum complex were investigated. A characteristic metal-ligand charge transfer absorption peak at 439 nm in the UV spectrum and a strong emission peak at 625 nm in the photoluminescence spectrum were observed for this complex in dichloromethane. Cyclic voltammtry (CV) analysis shows that the EHOMO (energy level of the highest occupied molecular orbital) and ELUMO (energy level of the lowest unoccupied molecular orbital) of the platinum complex are about 、5.69 and 、3.25 eV, respectively, indicating that the oxadiazole-based platinum complex has a potential application in electrophosphorescent devices used as a red-emitting material.
文摘A series of luminescent cyclometalated platinum(II) complexes, (C^N^N)Pt(C≡CR) [HC^N^N=4 (4 tolyl) 6 phenyl 2,2′ bipyridine; R=4 chlorophenyl (1), phenyl (2) and 4 tolyl (3)], were synthesized, and their spectroscopic properties have been examined. These complexes are brightly emissive both in fluid solution and in the solid state, attributed to triplet metal to ligand charge transfer ( 3MLCT) state. The excited state energy can be tuned by ancillary acetylide ligands. The emission lifetimes in dichloro^methane solution at room temperature were up to 1 64 μs and the emission quantum yields were in the range of 0 03-0 15.
基金supported by the National Natural Science Foundation of China(No.21274139)the Fundamental Research Funds for the Central Universities(Nos.WK3450000001,WK2060200012)
文摘Organoplatinum(Ⅱ) compounds have received enormous attention over the past decades due to their square-planar geometry as well as intriguing photo-physical properties.Self-assembly has emerged as an excellent approach to create well-ordered supramolecular architectures with tunable properties,which underpin the role of solvent-directed approach for the design of functional materials.In this minireview,the recent advances on supramolecular self-assembly of cyclometalated platinum(Ⅱ) complexes have been discussed.During the self-assembly process,non-covalent Pt-Pt and π-π interactions play crucial roles in controlling the structures and functions of the resulting assemblies.
基金This work is supported by the Major State Basic Re- search Development Program (No. 2002CB613406), the National Natural Science Foundation of China (No. 20973078), the Open Project of State Key Laboratory of Supramolecular Structure and Materials of Jilin Univer- sity (No. SKLSSM200716). W.-Y.W. thanks the Hong Kong Research Grants Council (No. HKBU202709) and the Hong Kong Baptist University (No. FRG2/08- 09/111) for financial support.
文摘An elaborated theoretical investigation on the optical and electronic properties of three fluorene-based plati- num(II) and iridium(III) cyclometalated complexes Pt-a, Ir-a and lr-b is reported. The geometric and electronic structures of the complexes in the ground state are studied with density functional theory and Hartree Fock ap- proaches, while the lowest triplet excited states are optimized by singles configuration interaction (CIS) methods. At the time-dependent density functional theory (TD-DFT) level, molecular absorption and emission properties were calculated on the basis of optimized ground- and excited-state geometries, respectively. The computational results show that the appearance of triphenylamino (TPA) moiety at the 9-position of fluorene ring favors the hole-creation and leads to red-shifts of absorption and emission spectra. Moreover, Pt-a and Ir-b are nice hole-transporting materials whereas Ir-a has good charge-transfer balance, which render them useful for the realiza- tion of efficient OLEDs (Organic Light-Emitting Diodes).