The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ...The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.展开更多
This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the...This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.展开更多
The analysis of the characteristics of the cushion process of the pneumatic cushion cylinder is presented, and the nonlinear model of pneumatic cushion cylinders is built in the form of nonlinear differential equation...The analysis of the characteristics of the cushion process of the pneumatic cushion cylinder is presented, and the nonlinear model of pneumatic cushion cylinders is built in the form of nonlinear differential equations. Besides, through the simulation of the pressure in the cushion chamber, the characteristics of the pneumatic cushion cylinder are obtained, which helps to understand the performance of the pneumatic cushion cylinder and improve or design the better cushion structure.展开更多
In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 a...In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 and volume fraction 0, 0.2%, 0.5%, 2% and 5% that related to copper nanoparticles, and porous medium porosity of 0.5 and 0.9. Compared to the first geometry, the convective coefficient in the second geometry increases by 8.3%, 7% and 5.5% at Reynolds numbers of 100, 75 and 50, respectively. Comparison of the outlet temperatures for two heat fluxes of 300 and 1200 W/m^2 indicates a 2.5% temperature growth by a fourfold increase in the heat fluxes. Also, the higher Nusselt number is associated with the second geometry occurring at porosities of 0.9 and 0.5, respectively. In both geometries, the Nusselt number values at the porosity of 0.9 are higher, which is due to the increased nanofluid convection at higher porosities. The velocity of the nanofluid experiences a two-fold increase at the outlet compared to its inlet velocity in the first geometry and for both porosities. Similarly, a three-fold increase was achieved in the second geometry and for both porosities.展开更多
The Xu & Yan scale-adaptive simulation (XYSAS) model is employed to simulate the flows past wavy cylinders at Reynolds number 8 × 10 3.This approach yields results in good agreement with experimental measureme...The Xu & Yan scale-adaptive simulation (XYSAS) model is employed to simulate the flows past wavy cylinders at Reynolds number 8 × 10 3.This approach yields results in good agreement with experimental measurements.The mean flow field and near wake vortex structure are replicated and compared with that of a corresponding circular cylinder.The effects of wavelength ratios λ/D m from 3 to 7,together with the amplitude ratios a /D m of 0.091 and 0.25,are fully investigated.Owing to the wavy configuration,a maximum reduction of Strouhal number and root-meansquare (r.m.s) fluctuating lift coefficients are up to 50% and 92%,respectively,which means the vortex induced vibration (VIV) could be effectively alleviated at certain larger values of λ/D m and a /D m.Also,the drag coefficients can be reduced by 30%.It is found that the flow field presents contrary patterns with the increase of λ/D m.The free shear layer becomes much more stable and rolls up into mature vortex only further downstream when λ/D m falls in the range of 5-7.The amplitude ratio a /D m greatly changes the separation line,and subsequently influences the wake structures.展开更多
In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream d...In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wakeshedding at small spacing ratio, bi-stable flow behavior(alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.展开更多
The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream c...The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream control cylinder (d) varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G) ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D) and the diameter ratio between the two cylinders (d/D) have important effects on the drag and lift coefficients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and flow characteristics.展开更多
A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacin...A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacing ratio T/D=1.5 (T is the center-to-center distance between two side-by-side cylinders, D is the diameter of cylinder). The instantaneous and time-averaged flow fields, force coefficients and Strouhal numbers are analyzed. Special attention is focused on the axial flow characteristics with variation of the inclined angle. The results show that the inclined angle has a significant effect on the gap flow behaviors behind two inclined cylinders. The vortex shedding behind two cylinders is suppressed with the increase of the inclined angle as well as the flip-flop gap flow. Moreover, the mean drag coefficient, root-mean-square lift coefficient and Strouhal numbers decrease monotonously with the increase of the inclined angle, which follows the independent principle at small inclined angles.展开更多
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and...The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.展开更多
Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf relate...Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf related to KC number and the effect of direction of wave propagation are also given, which may be useful for practical engineering application.展开更多
Wave diffraction of two concentric porous cylinders with varying porosity was studied by using an analytical method based on eigenfunction matching.The fluid domain around the cylinders is divided into three sub-domai...Wave diffraction of two concentric porous cylinders with varying porosity was studied by using an analytical method based on eigenfunction matching.The fluid domain around the cylinders is divided into three sub-domains and in each sub-domain an eigenfunction expansion of the velocity potential is obtained by satisfying the Laplace equation,the boundary conditions on the free surface and on the sea bed.The unknown coefficients of eigenfunction expansions are determined by boundary conditions on the porous hulls.In the paper,the boundary conditions are based upon the assumption that the flow in the porous medium is governed by Darcy's law.Two porous-effect parameters applied on two porous cylinders are functions of the vertical coordinate instead of the constant.Wave loading on the outer and inner cylinder is presented in the numerical results.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
The interaction of water waves with multiple circular cylinders is analysed briefly in this paper. The formula obtained by Linton and Evans is improved to introduce a relation of phase between cylinders. The condition...The interaction of water waves with multiple circular cylinders is analysed briefly in this paper. The formula obtained by Linton and Evans is improved to introduce a relation of phase between cylinders. The condition for the existence of the solution has been proved. The numerical results are compared with analytic solutions (Linton and Evans), numerical solutions and experimental data (Isaacson), and good agreement has been found.展开更多
A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces...A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.展开更多
We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform ax...We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.展开更多
In this study, we examine the water wave radiation by arrays of truncated circular cylinders. Each cylinder can oscillate independently in any rigid oscillation mode with a prescribed amplitude, including translationa...In this study, we examine the water wave radiation by arrays of truncated circular cylinders. Each cylinder can oscillate independently in any rigid oscillation mode with a prescribed amplitude, including translational and rotational modes such as surge, sway, heave, pitch, roll, and their combinations. Based on the eigenfunction expansion and Graf's addition theorem for Bessel functions, we developed an analytical method that includes the effects of evanescent modes in order to analyze such arrays of cylinders. To investigate the effects of several influential factors on convergence,our objective is to dramatically reduce the number of tests required and determine the influencing relationships between truncation number and convergence behavior for different factor combinations. We use the orthogonal test method to fulfill the objective. Lastly, we present our results regarding the effects of evanescent modes on hydrodynamic coefficients.展开更多
Helical strake is a widely-used device for passive flow-induced vibration(FIV)control of cylindrical structures.It is omnidirectional and can effectively reduce FIV response amplitude.Studies on the passive FIV contro...Helical strake is a widely-used device for passive flow-induced vibration(FIV)control of cylindrical structures.It is omnidirectional and can effectively reduce FIV response amplitude.Studies on the passive FIV control for cylindrical structures are mainly concerned with a single isolated cylinder,while the influence of wake interference between multiple cylinders on FIV suppression devices is less considered up to now.In engineering applications,multiple flexible cylinders with large aspect ratios can be subjected to complex flow forces,and the effects of wake interference are obvious.The FIV suppression effect of helical strake of a common configuration(17.5D pitch and 0.25D height,where D is the cylinder diameter)in two staggered cylinders system is still unknown.This paper systematically studied the FIV response of multiple cylinders system fitted with the helical strakes by model tests.The relative spatial position of the two cylinders is fixed at S=3.0D and T=8.0D,which ensures the cylindrical structures in the flow interference region.The experimental results show that the helical strakes effectively reduce the FIV response on staggered upstream cylinder,and the suppression efficiency is barely affected by the smooth or straked downstream cylinder.The corresponding FIV suppression efficiency on the downstream cylinder is remarkably reduced by the influence of the upstream wake flow.The wake-induced vibration(WIV)phenomenon is not observed on the staggered downstream cylinder,which normally occurs on the downstream straked cylinder in a tandem arrangement.展开更多
In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffr...In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.展开更多
Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to inves...Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases.Firstly,the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows.Then,forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T^*and combined ratio r.The combined flow cases are classified into three categories to investigate the effect of r on cylinder’s dynamic response,and the effect of T*is described under long and short period cases.Finally,fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T^*.The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.展开更多
The numerical method is used to calculate the flow around two square cylinders arranged side-by-side and the mean and fluctuating aerodynamic forces, and Strouhal numbers and power spectrum of lift force and drag forc...The numerical method is used to calculate the flow around two square cylinders arranged side-by-side and the mean and fluctuating aerodynamic forces, and Strouhal numbers and power spectrum of lift force and drag force are obtained. An improved MAC method proposed by Chen Suqin et al.,which uses three order upwind scheme to discretize the convection term and uses multigrid method to solve the Poisson equation for pressure is applied to simulate the flow around two square cylinders arranged side-by-side. Results show that the interference characteristic of two square cylinders arranged side-by-side is completely different with the different spacing ratio. When the spacing ratio is smaller than a certain critical value, the gap flow between two cylinders is biased to one side in a stable or unstable manner.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U2106223,51979193,52301352)。
文摘The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078010 and 52101321)the National Key Research and Development Program of China(Grant No.2022YFC3004300).
文摘This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.
文摘The analysis of the characteristics of the cushion process of the pneumatic cushion cylinder is presented, and the nonlinear model of pneumatic cushion cylinders is built in the form of nonlinear differential equations. Besides, through the simulation of the pressure in the cushion chamber, the characteristics of the pneumatic cushion cylinder are obtained, which helps to understand the performance of the pneumatic cushion cylinder and improve or design the better cushion structure.
文摘In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 and volume fraction 0, 0.2%, 0.5%, 2% and 5% that related to copper nanoparticles, and porous medium porosity of 0.5 and 0.9. Compared to the first geometry, the convective coefficient in the second geometry increases by 8.3%, 7% and 5.5% at Reynolds numbers of 100, 75 and 50, respectively. Comparison of the outlet temperatures for two heat fluxes of 300 and 1200 W/m^2 indicates a 2.5% temperature growth by a fourfold increase in the heat fluxes. Also, the higher Nusselt number is associated with the second geometry occurring at porosities of 0.9 and 0.5, respectively. In both geometries, the Nusselt number values at the porosity of 0.9 are higher, which is due to the increased nanofluid convection at higher porosities. The velocity of the nanofluid experiences a two-fold increase at the outlet compared to its inlet velocity in the first geometry and for both porosities. Similarly, a three-fold increase was achieved in the second geometry and for both porosities.
基金supported by the National Basic Research Program of China (2009CB724104)the National Natural Science Foundation of China (90716010)
文摘The Xu & Yan scale-adaptive simulation (XYSAS) model is employed to simulate the flows past wavy cylinders at Reynolds number 8 × 10 3.This approach yields results in good agreement with experimental measurements.The mean flow field and near wake vortex structure are replicated and compared with that of a corresponding circular cylinder.The effects of wavelength ratios λ/D m from 3 to 7,together with the amplitude ratios a /D m of 0.091 and 0.25,are fully investigated.Owing to the wavy configuration,a maximum reduction of Strouhal number and root-meansquare (r.m.s) fluctuating lift coefficients are up to 50% and 92%,respectively,which means the vortex induced vibration (VIV) could be effectively alleviated at certain larger values of λ/D m and a /D m.Also,the drag coefficients can be reduced by 30%.It is found that the flow field presents contrary patterns with the increase of λ/D m.The free shear layer becomes much more stable and rolls up into mature vortex only further downstream when λ/D m falls in the range of 5-7.The amplitude ratio a /D m greatly changes the separation line,and subsequently influences the wake structures.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14E090009State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, SOA), State Key Laboratory of Fluid Power Transmission and Control (GZKF-201310)+1 种基金State Key Laboratory of Ocean Engineering, China. The National Research Foundation of Singapore (NRF-CRP5-2009-01)Maritime Research Centre and Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, is acknowledged
文摘In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wakeshedding at small spacing ratio, bi-stable flow behavior(alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.
基金supported by the National Natural Science Foundation of China(Grant No.40871050)
文摘The flow past two tandem circular cylinders of different diameters was simulated using the finite volume method. The diameter of the downstream main cylinder (D) was kept constant, and the diameter of the upstream control cylinder (d) varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G) ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D) and the diameter ratio between the two cylinders (d/D) have important effects on the drag and lift coefficients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and flow characteristics.
基金financially supported by Joint Key Funds of Zhejiang Provincial Natural Science Foundation of China and Powerchina Huadong Engineering Corporation Limited(Grant No.LHZ19E090004)the National Key R&D Program of China(Grant No.2018YFD0900901)
文摘A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacing ratio T/D=1.5 (T is the center-to-center distance between two side-by-side cylinders, D is the diameter of cylinder). The instantaneous and time-averaged flow fields, force coefficients and Strouhal numbers are analyzed. Special attention is focused on the axial flow characteristics with variation of the inclined angle. The results show that the inclined angle has a significant effect on the gap flow behaviors behind two inclined cylinders. The vortex shedding behind two cylinders is suppressed with the increase of the inclined angle as well as the flip-flop gap flow. Moreover, the mean drag coefficient, root-mean-square lift coefficient and Strouhal numbers decrease monotonously with the increase of the inclined angle, which follows the independent principle at small inclined angles.
基金supported by the Fundamental Research Funds for the Central Universities and NPRP 08-691-2-289 grant from Qatar National Research Fund (QNRF)
文摘The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.
文摘Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf related to KC number and the effect of direction of wave propagation are also given, which may be useful for practical engineering application.
基金Supported by the National Natural Science Foundation of China under Grant No.51079032
文摘Wave diffraction of two concentric porous cylinders with varying porosity was studied by using an analytical method based on eigenfunction matching.The fluid domain around the cylinders is divided into three sub-domains and in each sub-domain an eigenfunction expansion of the velocity potential is obtained by satisfying the Laplace equation,the boundary conditions on the free surface and on the sea bed.The unknown coefficients of eigenfunction expansions are determined by boundary conditions on the porous hulls.In the paper,the boundary conditions are based upon the assumption that the flow in the porous medium is governed by Darcy's law.Two porous-effect parameters applied on two porous cylinders are functions of the vertical coordinate instead of the constant.Wave loading on the outer and inner cylinder is presented in the numerical results.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
文摘The interaction of water waves with multiple circular cylinders is analysed briefly in this paper. The formula obtained by Linton and Evans is improved to introduce a relation of phase between cylinders. The condition for the existence of the solution has been proved. The numerical results are compared with analytic solutions (Linton and Evans), numerical solutions and experimental data (Isaacson), and good agreement has been found.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50875057 and 51075082)the State Key Laboratory of Robotics and Systems (HIT No. SKLRS200901A04)
文摘A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.
基金Lyudmila Petrova for invaluable metrological support. A.I.D. also thanks RFBR grant no. 15-08-01511a
文摘We suppose that in order to maintain high accuracy of holes and to lower residual stresses after cold expansion of thick-walled cylinders, which undergo cross-section plastic deformation, it is necessary to perform axial plastic compression and subsequent cold expansion with small interferences. To test this hypothesis, we studied hoop, radial and axial residual stresses in cylinders made of carbon steel AISI 1050 with hole diameter of 5 mm, outer diameter of 15 mm and length of 30 mm by Sachs method as well as accuracy of expanded holes. It is found that double cold expansion with total interference equal to 5.1% generates hoop residual stresses with largest absolute value equal to 284 MPa and ensures high holes accuracy(IT7). After plastic compression with strain equal to 0.5 and 1% the mentioned stresses reduced to 120 and 75 MPa respectively,and accuracy of the holes reduced as well. Subsequent cold expansion with small interference equal to 0.9% helps to restore holes accuracy(IT7)gained by double cold expansion and ensure that absolute value of hoop residual stresses(177 MPa) is lower compared to double cold expansion.
基金supported by the National Natural Science Foundation of China (Grants 11072246, 51490673)the National Basic Research Program (973 Program) of China (Grant 2014CB046801)
文摘In this study, we examine the water wave radiation by arrays of truncated circular cylinders. Each cylinder can oscillate independently in any rigid oscillation mode with a prescribed amplitude, including translational and rotational modes such as surge, sway, heave, pitch, roll, and their combinations. Based on the eigenfunction expansion and Graf's addition theorem for Bessel functions, we developed an analytical method that includes the effects of evanescent modes in order to analyze such arrays of cylinders. To investigate the effects of several influential factors on convergence,our objective is to dramatically reduce the number of tests required and determine the influencing relationships between truncation number and convergence behavior for different factor combinations. We use the orthogonal test method to fulfill the objective. Lastly, we present our results regarding the effects of evanescent modes on hydrodynamic coefficients.
基金the National Natural Science Foundation of China(Grant No.51979193)the Natural Science Foundation of Tianjin(Grant No.20JCYBJC00890).
文摘Helical strake is a widely-used device for passive flow-induced vibration(FIV)control of cylindrical structures.It is omnidirectional and can effectively reduce FIV response amplitude.Studies on the passive FIV control for cylindrical structures are mainly concerned with a single isolated cylinder,while the influence of wake interference between multiple cylinders on FIV suppression devices is less considered up to now.In engineering applications,multiple flexible cylinders with large aspect ratios can be subjected to complex flow forces,and the effects of wake interference are obvious.The FIV suppression effect of helical strake of a common configuration(17.5D pitch and 0.25D height,where D is the cylinder diameter)in two staggered cylinders system is still unknown.This paper systematically studied the FIV response of multiple cylinders system fitted with the helical strakes by model tests.The relative spatial position of the two cylinders is fixed at S=3.0D and T=8.0D,which ensures the cylindrical structures in the flow interference region.The experimental results show that the helical strakes effectively reduce the FIV response on staggered upstream cylinder,and the suppression efficiency is barely affected by the smooth or straked downstream cylinder.The corresponding FIV suppression efficiency on the downstream cylinder is remarkably reduced by the influence of the upstream wake flow.The wake-induced vibration(WIV)phenomenon is not observed on the staggered downstream cylinder,which normally occurs on the downstream straked cylinder in a tandem arrangement.
文摘In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51909163 and 51979166)。
文摘Vortex-induced vibration(VIV)for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering.In this paper,a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases.Firstly,the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows.Then,forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T^*and combined ratio r.The combined flow cases are classified into three categories to investigate the effect of r on cylinder’s dynamic response,and the effect of T*is described under long and short period cases.Finally,fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T^*.The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.
文摘The numerical method is used to calculate the flow around two square cylinders arranged side-by-side and the mean and fluctuating aerodynamic forces, and Strouhal numbers and power spectrum of lift force and drag force are obtained. An improved MAC method proposed by Chen Suqin et al.,which uses three order upwind scheme to discretize the convection term and uses multigrid method to solve the Poisson equation for pressure is applied to simulate the flow around two square cylinders arranged side-by-side. Results show that the interference characteristic of two square cylinders arranged side-by-side is completely different with the different spacing ratio. When the spacing ratio is smaller than a certain critical value, the gap flow between two cylinders is biased to one side in a stable or unstable manner.