Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shie...Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.展开更多
The cylindrical Hall thruster has the good prospect of serving as a miniaturized electric propulsion device.A 2 D-3 V particle-in-cell plus Monte Carlo(PIC-MCC) method is used to study the effect of the magnetic cus...The cylindrical Hall thruster has the good prospect of serving as a miniaturized electric propulsion device.A 2 D-3 V particle-in-cell plus Monte Carlo(PIC-MCC) method is used to study the effect of the magnetic cusp on discharge characteristics of a cylindrical Hall thruster.The simulation results show that the main ionization region and the main potential drop of the thruster are located at the upstream of the discharge channel.When the magnetic cusp moves toward the anode side,the main ionization region is compressed and weakened,moving upstream correspondingly.The ionization near the cusp is enhanced,and the interaction between the plasma and the wall increases.The simulation results suggest that the magnetic cusp should be located near the channel exit.展开更多
The intersection point of the characteristic magnetic field line(CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombardin...The intersection point of the characteristic magnetic field line(CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombarding the channel wall, have been studied numerically. The simulation results demonstrate that with the increase in distance from the crossover point of the CMFL with the channel wall to the bottom of the thruster channel, the ionization rate in the discharge channel gradually increases; meanwhile, the ion energy and ion current density bombarding the channel wall decreases. When the point of the CMFL with the channel wall is at the channel outlet, the thrust, specific impulse, and efficiency are at a maximum, while the ion energy and ion current density bombarding the channel wall are at a minimum. Therefore, to improve the performance and lifetime of the thruster, it is important to control the point of intersection of the CMFL with the channel wall.展开更多
A 200 W cylindrical Hall thruster with a cusp-type magnetic field was proposed, manifesting convergent plume and high specific impulse. In this paper, a series of ring-shaped anodes are designed and the influence of a...A 200 W cylindrical Hall thruster with a cusp-type magnetic field was proposed, manifesting convergent plume and high specific impulse. In this paper, a series of ring-shaped anodes are designed and the influence of anode axial position on the performance of CHT with a cusp-type magnetic field is studied. The experimental results indicate that the thruster keeps stable operation at the condition of 140–270 W discharge power. When the anode moves axially towards the upstream cusp field, the thrust enhances from 6.5 mN to 7.6 mN and specific impulse enhances from 1658 s to 1939 s significantly. These improvements of thruster performance should be attributed to the enhancement of current utilization, propellant utilization and acceleration efficiency. According to the analyses on the discharge characteristics, it is revealed that as the anode moves upstream, the electron transport path could be extended, the magnetic field in this extended path could impede electron cross-field transport and facilitate the ionization intensity, yielding to the enhancement of current utilization and propellant utilization efficiency.Moreover, along with this enhancement of upstream ionization at the given anode flow rate, the main ionization region is thought to move upstream and then separate more apparently from the acceleration region, which has been demonstrated by the narrowing of ion energy distribution function shape. This change in acceleration region could decrease the ion energy loss and enhance acceleration efficiency. This work is beneficial for optimizing the electrode structure of thruster and recognize the ionization and acceleration process under the cusp magnetic field.展开更多
基金supported by National Natural Science Foundation of China (No. 10675040)College Scientific Research and Development Fund (No. C122009015) of China
文摘Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505041 and 51776047)
文摘The cylindrical Hall thruster has the good prospect of serving as a miniaturized electric propulsion device.A 2 D-3 V particle-in-cell plus Monte Carlo(PIC-MCC) method is used to study the effect of the magnetic cusp on discharge characteristics of a cylindrical Hall thruster.The simulation results show that the main ionization region and the main potential drop of the thruster are located at the upstream of the discharge channel.When the magnetic cusp moves toward the anode side,the main ionization region is compressed and weakened,moving upstream correspondingly.The ionization near the cusp is enhanced,and the interaction between the plasma and the wall increases.The simulation results suggest that the magnetic cusp should be located near the channel exit.
基金financially supported by National Natural Science Foundation of China(Grant Nos.51777045 and51477035)Shenzhen Technology Project(Project Nos.JCYJ20160226201347750 and JCYJ20150529115038093)
文摘The intersection point of the characteristic magnetic field line(CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombarding the channel wall, have been studied numerically. The simulation results demonstrate that with the increase in distance from the crossover point of the CMFL with the channel wall to the bottom of the thruster channel, the ionization rate in the discharge channel gradually increases; meanwhile, the ion energy and ion current density bombarding the channel wall decreases. When the point of the CMFL with the channel wall is at the channel outlet, the thrust, specific impulse, and efficiency are at a maximum, while the ion energy and ion current density bombarding the channel wall are at a minimum. Therefore, to improve the performance and lifetime of the thruster, it is important to control the point of intersection of the CMFL with the channel wall.
基金support from the Defense Industrial Technology Development Program (No. JCKY2019601D112)。
文摘A 200 W cylindrical Hall thruster with a cusp-type magnetic field was proposed, manifesting convergent plume and high specific impulse. In this paper, a series of ring-shaped anodes are designed and the influence of anode axial position on the performance of CHT with a cusp-type magnetic field is studied. The experimental results indicate that the thruster keeps stable operation at the condition of 140–270 W discharge power. When the anode moves axially towards the upstream cusp field, the thrust enhances from 6.5 mN to 7.6 mN and specific impulse enhances from 1658 s to 1939 s significantly. These improvements of thruster performance should be attributed to the enhancement of current utilization, propellant utilization and acceleration efficiency. According to the analyses on the discharge characteristics, it is revealed that as the anode moves upstream, the electron transport path could be extended, the magnetic field in this extended path could impede electron cross-field transport and facilitate the ionization intensity, yielding to the enhancement of current utilization and propellant utilization efficiency.Moreover, along with this enhancement of upstream ionization at the given anode flow rate, the main ionization region is thought to move upstream and then separate more apparently from the acceleration region, which has been demonstrated by the narrowing of ion energy distribution function shape. This change in acceleration region could decrease the ion energy loss and enhance acceleration efficiency. This work is beneficial for optimizing the electrode structure of thruster and recognize the ionization and acceleration process under the cusp magnetic field.