A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution...A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution during the different process stages and macroforming quality of the spun parts made of ASTM 1020 steel are investigated. The results show that the microstructures of the ferrites and pearlites in the ASTM 1020 steel are transformed to the lath martensites after quenching. The martensite laths obtained by quenching are refined to 87 nm and a small amount of nanoscale deformation twins with an average thickness of 20 nm is generated after performing a 3-pass stagger spinning with 55% thinning ratio of wall thickness, where the equivalent strain required is only 0.92. The equiaxial ferritic grains with an average size of 160 nm and nano-carbides are generated by subsequent recrystallization annealing at 480°C for 30 min. The spun parts with high dimensional precision and low surface roughness are obtained by the forming method developed in this work, combining quenching with 3-pass stagger spinning and recrystallization annealing.展开更多
Revealing the development of microstructural inhomogeneity in the multi-pass flow forming of titanium alloy components is of great significance to the microstructure control and property tailoring.To this end,the micr...Revealing the development of microstructural inhomogeneity in the multi-pass flow forming of titanium alloy components is of great significance to the microstructure control and property tailoring.To this end,the microstructural inhomogeneity of TA15 alloy spun cylindrical parts was analyzed based on the deformation history.The results indicate that the material underwent significant compressive strain in the normal direction(ND),tension strain in the rolling and circumferential directions(RD and CD),while tension strain in the CD is slightly small due to the limited material flow in this direction.These strain characteristics make the microstructure,especially the primary a(ap),present different morphologies in the different planes of the part.Meanwhile,the combined effects of inhomogeneous deformation and temperature distribution in the ND also cause the inhomogeneity of microstructure morphology and parameters in this direction.Quantitative analyses show that with the forming pass increasing,the aspect ratio of apincreases most in the normal-rolling plane,then in the normal-circumferential plane and least in the circumferential-rolling plane,whereas apcontent decreases in an opposite trend.Along the ND,the aspect ratio and content of apis relatively high in the outer and inner surface areas but lowest in the central area,and these inhomogeneous characteristics can be gradually diminished with the forming pass increasing.Furthermore,the variation of hardness inhomogeneity factor indicates that a four-pass forming with the total reduction ratio of 63%could obtain a homogenous microstructure along the ND of the TA15 alloy spun cylindrical part.展开更多
Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling p...Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51075153)Natural Science Foundation of Guangdong Province(Grant No.10151040301000000)+1 种基金Key Laboratory of Precision Equipment and Manufacturing Technology of Guangdong Province(Grant No.PEMT1202)the EU FP7 Marie Curie International Research Staff Exchange Scheme(IRSES)Mat Pro Future Project(Grant No.318968)
文摘A new spinning method to manufacture the cylindrical parts with nano/ultrafine grained structures is proposed, which consists of quenching, power spinning and recrystallization annealing. The microstructural evolution during the different process stages and macroforming quality of the spun parts made of ASTM 1020 steel are investigated. The results show that the microstructures of the ferrites and pearlites in the ASTM 1020 steel are transformed to the lath martensites after quenching. The martensite laths obtained by quenching are refined to 87 nm and a small amount of nanoscale deformation twins with an average thickness of 20 nm is generated after performing a 3-pass stagger spinning with 55% thinning ratio of wall thickness, where the equivalent strain required is only 0.92. The equiaxial ferritic grains with an average size of 160 nm and nano-carbides are generated by subsequent recrystallization annealing at 480°C for 30 min. The spun parts with high dimensional precision and low surface roughness are obtained by the forming method developed in this work, combining quenching with 3-pass stagger spinning and recrystallization annealing.
基金the financial support from the National Science Fund for Distinguished Young Scholars of China(No.51625505)the Key Program Project of the Joint Fund of Astronomy and National Natural Science Foundation of China(No.U1537203)+1 种基金National Natural Science Foundation of China(No.51875467)the support of Young Elite Scientists Sponsorship Program by CAST of China(No.2018QNRC001)。
文摘Revealing the development of microstructural inhomogeneity in the multi-pass flow forming of titanium alloy components is of great significance to the microstructure control and property tailoring.To this end,the microstructural inhomogeneity of TA15 alloy spun cylindrical parts was analyzed based on the deformation history.The results indicate that the material underwent significant compressive strain in the normal direction(ND),tension strain in the rolling and circumferential directions(RD and CD),while tension strain in the CD is slightly small due to the limited material flow in this direction.These strain characteristics make the microstructure,especially the primary a(ap),present different morphologies in the different planes of the part.Meanwhile,the combined effects of inhomogeneous deformation and temperature distribution in the ND also cause the inhomogeneity of microstructure morphology and parameters in this direction.Quantitative analyses show that with the forming pass increasing,the aspect ratio of apincreases most in the normal-rolling plane,then in the normal-circumferential plane and least in the circumferential-rolling plane,whereas apcontent decreases in an opposite trend.Along the ND,the aspect ratio and content of apis relatively high in the outer and inner surface areas but lowest in the central area,and these inhomogeneous characteristics can be gradually diminished with the forming pass increasing.Furthermore,the variation of hardness inhomogeneity factor indicates that a four-pass forming with the total reduction ratio of 63%could obtain a homogenous microstructure along the ND of the TA15 alloy spun cylindrical part.
文摘Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts.