The sluggish K^(+)kinetics and structural instability of the generally-used graphite and other carbon-based materials hinder the development of potassium-ion batteries(PIBs)for high-rate capability and long-term cycli...The sluggish K^(+)kinetics and structural instability of the generally-used graphite and other carbon-based materials hinder the development of potassium-ion batteries(PIBs)for high-rate capability and long-term cycling.Herein,inspired by the unique flake structure and chemical composition of cytomembrane and cytoderm,we design high-tortuosity holey graphene as a highly efficient anode for PIBs.The flake cytomembrane and cytoderm shrink into wrinkled morphology during drying and sintering and then convert into high-tortuosity graphene after oxidative exfoliating and thermal reducing process.Mean-while,the proteins,sugars,and glycolipids embedded in cytomembrane and cytoderm can in-situ form nanoholes with highly abundant oxygenic groups and heteroatoms around,which can be easily removed and finally the high-tortuosity holey graphene is obtained after a thermal reducing process.The stress distribution after K^(+)intercalation confirms the optimized release of strain caused by the volume change through the finite element method.Benefiting from the unique nanoholes shortening the ion-diffusion length,the synergy of wrinkled and holey structure stabilizing volume fluctuation,and the enhanced electronic conductivity and specific surface area,the high-tortuosity holey graphene demonstrates high reversible capacities of 410 mAh g^(-1)at 25 mA g^(-1)after 150 cycles and retains 91.5%at 2 A g^(-1)after 2500 cycles.展开更多
Objective:To investigate the inhibitory effect of calcium hydroxide on methicillin-resistant Staphylococcus aureus and the related inhibition mechanism.Methods:To determine the minimum inhibitory concentration of calc...Objective:To investigate the inhibitory effect of calcium hydroxide on methicillin-resistant Staphylococcus aureus and the related inhibition mechanism.Methods:To determine the minimum inhibitory concentration of calcium hydroxide using microplate dilution method;to compare the effects of calcium hydroxide at 8MIC,MIC,1/4MIC and 0 concentrations on MRSA using growth curve method;to determine the effects of calcium hydroxide on the cell membrane of methicillin-resistant Staphylococcus aureus using calcium xanthophyll and propidium iodide fluorescence staining The effect of calcium hydroxide on the morphology of methicillin-resistant Staphylococcus aureus was observed by scanning electron microscopy;the inhibition mechanism of calcium hydroxide on MRSA was investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis of protein bands.Results:The MIC of calcium hydroxide on MRSA was 3.125 mg/mL;the fluorescence intensity showed significant changes after co-culture of calcium hydroxide with bacteria;MRSA appeared to be significantly crumpled and broken in the presence of calcium hydroxide;the SDS-PAGE experimental bands indicated that the protein inside the bacteria decreased accordingly with the increase of calcium hydroxide concentration.Conclusion:Calcium hydroxide has a significant inhibitory effect on the growth of MRSA,and its bactericidal mechanism may be related to the destruction of bacterial body structure.展开更多
基金This work was financially supported by the Program of Sci-ence and Technology International Cooperation Project of Qing-hai Province(No.2022-HZ-807)Young Elite Scientist Sponsorship Program by CAST(No.YESS20200103)Fundamental Research Funds for the Central Universities(No.2652019033).
文摘The sluggish K^(+)kinetics and structural instability of the generally-used graphite and other carbon-based materials hinder the development of potassium-ion batteries(PIBs)for high-rate capability and long-term cycling.Herein,inspired by the unique flake structure and chemical composition of cytomembrane and cytoderm,we design high-tortuosity holey graphene as a highly efficient anode for PIBs.The flake cytomembrane and cytoderm shrink into wrinkled morphology during drying and sintering and then convert into high-tortuosity graphene after oxidative exfoliating and thermal reducing process.Mean-while,the proteins,sugars,and glycolipids embedded in cytomembrane and cytoderm can in-situ form nanoholes with highly abundant oxygenic groups and heteroatoms around,which can be easily removed and finally the high-tortuosity holey graphene is obtained after a thermal reducing process.The stress distribution after K^(+)intercalation confirms the optimized release of strain caused by the volume change through the finite element method.Benefiting from the unique nanoholes shortening the ion-diffusion length,the synergy of wrinkled and holey structure stabilizing volume fluctuation,and the enhanced electronic conductivity and specific surface area,the high-tortuosity holey graphene demonstrates high reversible capacities of 410 mAh g^(-1)at 25 mA g^(-1)after 150 cycles and retains 91.5%at 2 A g^(-1)after 2500 cycles.
基金National Natural Science Foundation of China(No.82060347)。
文摘Objective:To investigate the inhibitory effect of calcium hydroxide on methicillin-resistant Staphylococcus aureus and the related inhibition mechanism.Methods:To determine the minimum inhibitory concentration of calcium hydroxide using microplate dilution method;to compare the effects of calcium hydroxide at 8MIC,MIC,1/4MIC and 0 concentrations on MRSA using growth curve method;to determine the effects of calcium hydroxide on the cell membrane of methicillin-resistant Staphylococcus aureus using calcium xanthophyll and propidium iodide fluorescence staining The effect of calcium hydroxide on the morphology of methicillin-resistant Staphylococcus aureus was observed by scanning electron microscopy;the inhibition mechanism of calcium hydroxide on MRSA was investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis of protein bands.Results:The MIC of calcium hydroxide on MRSA was 3.125 mg/mL;the fluorescence intensity showed significant changes after co-culture of calcium hydroxide with bacteria;MRSA appeared to be significantly crumpled and broken in the presence of calcium hydroxide;the SDS-PAGE experimental bands indicated that the protein inside the bacteria decreased accordingly with the increase of calcium hydroxide concentration.Conclusion:Calcium hydroxide has a significant inhibitory effect on the growth of MRSA,and its bactericidal mechanism may be related to the destruction of bacterial body structure.