The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and on...Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and only if M_α/r_(M_α)(R^((β))A) ≈ Hom_R(R^((β))A,M) ifand only if r_(M_β)l_(R^((β)))(A) = AM_α. Thus, the notion of (m,n)-injectivity was extended.Moreover, ( α, β) -flatness was characterized via annihilators of matrices, factorizations ofhomomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules andn-projective modules were consolidated under the notion of (α, β)-flat modules. Furthermore, acharacterization of left R-ML modules and some equivalent conditions for R^((β)) to be left R-MLwere presented. Consequently, the notions of coherent rings, (m, n)-coherent rings and π-coherentrings were consolidated under that of (α, β)-coherent rings.展开更多
临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient c...临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient channel attention,ECA)的D-Linknet模型。首先,利用Res2-net代替基础模型中的残差模块Res-net以提升每个网络层的感受野;其次,在Res2-net中添加一种结合压缩激励(squeeze and excitation,SE)和门通道(gated channel transformation,GCT)的注意力机制模块,改善处于复杂背景下的血管分割效果和效率;在网络的解码层加入ECA确保模型计算的性能,避免因降维导致的精度下降;最后,融合改进的模型输出图与掩膜图细化分割结果。在公开数据集DRIVE、STARE上进行分割实验,模型准确度(accuracy,AC)分别为97.11%、96.32%,灵敏度(sensitivity,SE)为84.55%、83.92%,曲线下方范围的面积(area under curve,AUC)为0.9873和0.9766,分割效果优于其他模型。实验证明了算法的可行性,为后续研究提供科学依据。展开更多
Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integr...Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.展开更多
Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance...Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.展开更多
Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designe...Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.展开更多
We consider a generalization of the Radon-Schmid transform on coherent D-modules of sheaves of holomorphic complex bundles inside a moduli space, with the purpose of establishing the equivalences among geometric objec...We consider a generalization of the Radon-Schmid transform on coherent D-modules of sheaves of holomorphic complex bundles inside a moduli space, with the purpose of establishing the equivalences among geometric objects (vector bundles) and algebraic objects as they are the coherent D-modules, these last with the goal of obtaining conformal classes of connections of the holomorphic complex bundles. The class of these equivalences conforms a moduli space on coherent sheaves that define solutions in field theory. Also by this way, and using one generalization of the Penrose transform in the context of coherent D-modules we find conformal classes of the space-time that include the heterotic strings and branes geometry.展开更多
We consider generalizations of the Radon-Schmid transform on coherent DG/H-Modules, with the intention of obtaining the equivalence between geometric objects (vector bundles) and algebraic objects (D-Modules) characte...We consider generalizations of the Radon-Schmid transform on coherent DG/H-Modules, with the intention of obtaining the equivalence between geometric objects (vector bundles) and algebraic objects (D-Modules) characterizing conformal classes in the space-time that determine a space moduli [1] on coherent sheaves for the securing solutions in field theory [2]. In a major context, elements of derived categories like D-branes and heterotic strings are considered, and using the geometric Langlands program, a moduli space is obtained of equivalence between certain geometrical pictures (non-conformal world sheets [3]) and physical stacks (derived sheaves), that establishes equivalence between certain theories of super symmetries of field of a Penrose transform that generalizes the implications given by the Langlands program. With it we obtain extensions of a cohomology of integrals for a major class of field equations to corresponding Hecke category.展开更多
Nociceptive signals conveyed to the dorsal horn of the spinal cord by primary nociceptors are subject to extensive modulation by local neurons and by supraspinal descending pathways to the spinal cord before being rel...Nociceptive signals conveyed to the dorsal horn of the spinal cord by primary nociceptors are subject to extensive modulation by local neurons and by supraspinal descending pathways to the spinal cord before being relayed to higher brain centers. Descending modulatory pathways to the spinal cord comprise,among others, noradrenergic, serotonergic, γ-aminobutyric acid(GABA)ergic, and dopaminergic fibers.The contributions of noradrenaline, serotonin, and GABA to pain modulation have been extensively investigated. In contrast, the contributions of dopamine to pain modulation remain poorly understood.The focus of this review is to summarize the current knowledge of the contributions of dopamine to pain modulation. Hypothalamic A11 dopaminergic neurons project to all levels of the spinal cord and provide the main source of spinal dopamine. Dopamine receptors are expressed in primary nociceptors as well as in spinal neurons located in different laminae in the dorsal horn of the spinal cord, suggesting that dopamine can modulate pain signals by acting at both presynaptic and postsynaptic targets. Here, I will review the literature on the effects of dopamine and dopamine receptor agonists/antagonists on the excitability of primary nociceptors, the effects of dopamine on the synaptic transmission between primary nociceptors and dorsal horn neurons, and the effects of dopamine on pain in rodents. Published data support both anti-nociceptive effects of dopamine mediated by D2-like receptors and pro-nociceptive effects mediated by D1-like receptors.展开更多
It is desirable to fabricate materials with adjustable physical properties that can be used in different industrial applications.Since the property of a material is highly dependent on its inner structure,the understa...It is desirable to fabricate materials with adjustable physical properties that can be used in different industrial applications.Since the property of a material is highly dependent on its inner structure,the understanding of structure–property correlation is critical to the design of engineering materials.3D printing appears as a mature method to effectively produce micro-structured materials.In this work,we created different stainless-steel microstructures by adjusting the speed of 3D printing and studied the relationship between thermal property and printing speed.Our microstructure study demonstrates that highly porous structures appear at higher speeds,and there is a nearly linear relationship between porosity and printing speed.The thermal conductivity of samples fabricated by different printing speeds is characterized.Then,the correlation between porosity,thermal conductivity,and scanning speed is established.Based on this correlation,the thermal conductivity of a sample can be predicted from its printing speed.We fabricated a new sample at a different speed,and the thermal conductivity measurement agrees well with the value predicted from the correlation.To explore thermal transport physics,the effects of pore structure and temperature on the thermal performance of the printed block are also studied.Our work demonstrates that the combination of the 3D printing technique and the printing speed control can regulate the thermophysical properties of materials.展开更多
In the view of the comparison of Mass Customization ( MC) with Mass Production and Customization Production, the objectives of MC are analyzed. It is pointed out that the core objectives of MC are to realize in dividu...In the view of the comparison of Mass Customization ( MC) with Mass Production and Customization Production, the objectives of MC are analyzed. It is pointed out that the core objectives of MC are to realize in dividuation customization, low cost, quick response to market demands. The modul arization theory is simply introduced. Based on the characteristics of modular ization, the mechanism of realizing MC with modularization is analyzed. The in dividuation customization can be realized with the different combinations of mod ules. The low cost can be realized with the scale economy and the category econo my of modules. The quick response can be realized with standard modules and its interfaces. So, the modularization is a kind of effective method in realizing MC . The modularization for MC is a systems engineering. With product modularized, production organization and management and manufacturing equipment will be chang ed. In addition, the paper also proposes a Mass Customization production model w hich is based on modularization. This Mass Customization production model is con sisted of modularization of product design, specialization of manufacturing, Vir tual Enterprises based on modularizing enterprises, and modularizing manufacturi ng equipment. The module design for MC, modularizing enterprises, and reconfigur able automation manufacturing equipment are discussed, and it is pointed out tha t they are the important supports for MC.展开更多
It is necessary to investigate the characteristics of Mesenchymal stem cells(MSCs)derived exosomes,and especially their application in tissue regeneration.Previous studies have shown that inflammatory stimulation enha...It is necessary to investigate the characteristics of Mesenchymal stem cells(MSCs)derived exosomes,and especially their application in tissue regeneration.Previous studies have shown that inflammatory stimulation enhanced the secretion of MSC-derived exosomes with stronger anti-inflammatory protein,cytokine profiles,and functional RNA via altering COX2/PGE2 pathway.Recently,accumulating evidence has also revealed that biophysical cues(especially biomechanical cues)in cell microenvironment have significant effects not only on cells but also on their exosomes.It has been reported that applying bi-axial strain to MSCs induces formation of a stiffer cytoskeleton through mTORC2 signaling,which biases against adipogenic differentiation and toward osteoblastogenesis.At the same time,For example,dimensionality,composition and stiffness of the extracellular matrix(ECM)has been proved to affect the size and composition of exosomes secreted by cancer cells.However,the effects of biomechanical cues in the three-dimensional(3D)microenvironment on stem cell-derived exosomes remains to be unveiled.Therefore,it is important to understand the roles of 3D cell mechanical microenvironment in regulating the characteristics of stem cell-derived exosomes and develop more efficient approaches to enhance their functions.This study aimed to explore the changes in characteristics of exosomes secreted by MSCs in periodontium in response to the matrix strain in 3D.Periodontal ligament stem cells(PDLSCs)were cultured in a 3D strain microenvironment engineered with microscale magnetically stretched collagen hydrogels.The morphology,particle distribution,marker protein expression of PDLSC-derived exosomes were analyzed.Then the pro-osteogenic property of exosomes was evaluated by assessing cell viability,proliferation,migration and osteogenic differentiation of target cells,for instance human bone marrow mesenchymal stem cells(hBMSCs).Detailed characterizations revealed that PDLSC-derived exosomes in the 3D strain mi-croenvironment were with similar morphology,particle distribution and surface markers.Notably,Exosomes secreted by PDLSCs in strain microenvironment were more endocytosed by hBMSCs and were more potent in improving proliferation and migration of hBMSCs,comparing with PDLSCs in non-strain environment.Alizarin red staining and molecular biology experiments confirmed that treatment of exosomes secreted by PDLSCs under mechanical stimulation led to a significant increase in osteogenic differentiation of hBMSCs in vitro.Meanwhile,in vivo study also indicated that PDLSC-derived exosomes obtained from the 3D strain microenvironment could obviously promote new bone formation.Our findings revealed that mechanical cues profoundly affected the characteristics of PDLSC-derived exosomes,especially for their bio-activity,providing a foundation for using the 3D mechanical microenvironment to enhance the osteo-inductive functions of stem cell-derived exosomes in cell-free therapy for bone regeneration.展开更多
A reduction in the track width of magnetic recording systems results in a welcome increase in Areal Density(AD),but can severely deteriorate system performance in the unfortunate appearance of extreme Inter-Track Inte...A reduction in the track width of magnetic recording systems results in a welcome increase in Areal Density(AD),but can severely deteriorate system performance in the unfortunate appearance of extreme Inter-Track Interference(ITI).The effect of severe ITI may be mitigated by using coding schemes.In this paper,therefore,we present a rate-5/62-Dimensional(2D)modulation code based on a proposed Single-Reader/Two-track Reading(SRTR)technique to cope with this serious problem in staggered Bit-Pattemed Magnetic Recording(BPMR)systems.We then evaluate the Bit-Error Rate(BER)performance of the proposed system in the presence of media noises,e.g.,position and size fluctuations.Our simulation results indicate that,at the same User Density(UD),the proposed system performs better than an uncoded system by about 1.0 dB at the BER of 105 and is also superior to the conventional recording system.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanopart...Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.展开更多
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
文摘Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and only if M_α/r_(M_α)(R^((β))A) ≈ Hom_R(R^((β))A,M) ifand only if r_(M_β)l_(R^((β)))(A) = AM_α. Thus, the notion of (m,n)-injectivity was extended.Moreover, ( α, β) -flatness was characterized via annihilators of matrices, factorizations ofhomomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules andn-projective modules were consolidated under the notion of (α, β)-flat modules. Furthermore, acharacterization of left R-ML modules and some equivalent conditions for R^((β)) to be left R-MLwere presented. Consequently, the notions of coherent rings, (m, n)-coherent rings and π-coherentrings were consolidated under that of (α, β)-coherent rings.
文摘临床医生可通过观察眼底视网膜血管及其分支对人体是否患有疾病进行早期诊断,但由于视网膜中的血管错综复杂,模型在分割时会出现对微细血管分割精确度不足的问题。为此,提出一种结合残差模块Res2-net以及高效通道注意力机制(efficient channel attention,ECA)的D-Linknet模型。首先,利用Res2-net代替基础模型中的残差模块Res-net以提升每个网络层的感受野;其次,在Res2-net中添加一种结合压缩激励(squeeze and excitation,SE)和门通道(gated channel transformation,GCT)的注意力机制模块,改善处于复杂背景下的血管分割效果和效率;在网络的解码层加入ECA确保模型计算的性能,避免因降维导致的精度下降;最后,融合改进的模型输出图与掩膜图细化分割结果。在公开数据集DRIVE、STARE上进行分割实验,模型准确度(accuracy,AC)分别为97.11%、96.32%,灵敏度(sensitivity,SE)为84.55%、83.92%,曲线下方范围的面积(area under curve,AUC)为0.9873和0.9766,分割效果优于其他模型。实验证明了算法的可行性,为后续研究提供科学依据。
基金funding support from the National Major Research and Development Program(2019YFB2203603)the National Science Fund for Distinguished Young Scholars(61725503)+2 种基金the National Natural Science Foundation of China(NSFC)(62275273,11804387,and 91950205)the China Postdoctoral Science Foundation(2020M681847)the Zhejiang Provincial Natural Science Foundation(LZ18F050001).
文摘Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.
基金supported by the National Key Research and Development Program of China(2022YFF1001403)the Natural Science Foundation of Hebei Province,China(C2022204205)+1 种基金the National Natural Science Foundation of China(32372194)the National Top Talent Project and Hebei Top Talent,China。
文摘Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21103194,51506205,and 21673243)the Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2014A010106018 and 2013A011401011)+3 种基金the Guangdong-Hong Kong Joint Innovation Project of Guangdong Province,China(Grant No.2014B050505015)the Special Support Program of Guangdong Province,China(Grant No.2014TQ01N610)the Director Innovation Foundation of Guangzhou Institute of Energy Conversion,China(Grant No.y307p81001)the Solar Photothermal Advanced Materials Engineering Research Center Construction Project of Guangdong Province,China(Grant No.2014B090904071)
文摘Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.
文摘We consider a generalization of the Radon-Schmid transform on coherent D-modules of sheaves of holomorphic complex bundles inside a moduli space, with the purpose of establishing the equivalences among geometric objects (vector bundles) and algebraic objects as they are the coherent D-modules, these last with the goal of obtaining conformal classes of connections of the holomorphic complex bundles. The class of these equivalences conforms a moduli space on coherent sheaves that define solutions in field theory. Also by this way, and using one generalization of the Penrose transform in the context of coherent D-modules we find conformal classes of the space-time that include the heterotic strings and branes geometry.
文摘We consider generalizations of the Radon-Schmid transform on coherent DG/H-Modules, with the intention of obtaining the equivalence between geometric objects (vector bundles) and algebraic objects (D-Modules) characterizing conformal classes in the space-time that determine a space moduli [1] on coherent sheaves for the securing solutions in field theory [2]. In a major context, elements of derived categories like D-branes and heterotic strings are considered, and using the geometric Langlands program, a moduli space is obtained of equivalence between certain geometrical pictures (non-conformal world sheets [3]) and physical stacks (derived sheaves), that establishes equivalence between certain theories of super symmetries of field of a Penrose transform that generalizes the implications given by the Langlands program. With it we obtain extensions of a cohomology of integrals for a major class of field equations to corresponding Hecke category.
基金supported by internal funds to MP from the Department of Anesthesiology,Stony Brook Medicine,USA
文摘Nociceptive signals conveyed to the dorsal horn of the spinal cord by primary nociceptors are subject to extensive modulation by local neurons and by supraspinal descending pathways to the spinal cord before being relayed to higher brain centers. Descending modulatory pathways to the spinal cord comprise,among others, noradrenergic, serotonergic, γ-aminobutyric acid(GABA)ergic, and dopaminergic fibers.The contributions of noradrenaline, serotonin, and GABA to pain modulation have been extensively investigated. In contrast, the contributions of dopamine to pain modulation remain poorly understood.The focus of this review is to summarize the current knowledge of the contributions of dopamine to pain modulation. Hypothalamic A11 dopaminergic neurons project to all levels of the spinal cord and provide the main source of spinal dopamine. Dopamine receptors are expressed in primary nociceptors as well as in spinal neurons located in different laminae in the dorsal horn of the spinal cord, suggesting that dopamine can modulate pain signals by acting at both presynaptic and postsynaptic targets. Here, I will review the literature on the effects of dopamine and dopamine receptor agonists/antagonists on the excitability of primary nociceptors, the effects of dopamine on the synaptic transmission between primary nociceptors and dorsal horn neurons, and the effects of dopamine on pain in rodents. Published data support both anti-nociceptive effects of dopamine mediated by D2-like receptors and pro-nociceptive effects mediated by D1-like receptors.
基金supported by the National Key R&D Program of China(Nos.2018YFB1106100,2019YFE0119900)the National Natural Science Foundation of China(No.52076156)the Fundamental Research Funds for the Central Universities(No.2042020kf0194)。
文摘It is desirable to fabricate materials with adjustable physical properties that can be used in different industrial applications.Since the property of a material is highly dependent on its inner structure,the understanding of structure–property correlation is critical to the design of engineering materials.3D printing appears as a mature method to effectively produce micro-structured materials.In this work,we created different stainless-steel microstructures by adjusting the speed of 3D printing and studied the relationship between thermal property and printing speed.Our microstructure study demonstrates that highly porous structures appear at higher speeds,and there is a nearly linear relationship between porosity and printing speed.The thermal conductivity of samples fabricated by different printing speeds is characterized.Then,the correlation between porosity,thermal conductivity,and scanning speed is established.Based on this correlation,the thermal conductivity of a sample can be predicted from its printing speed.We fabricated a new sample at a different speed,and the thermal conductivity measurement agrees well with the value predicted from the correlation.To explore thermal transport physics,the effects of pore structure and temperature on the thermal performance of the printed block are also studied.Our work demonstrates that the combination of the 3D printing technique and the printing speed control can regulate the thermophysical properties of materials.
文摘In the view of the comparison of Mass Customization ( MC) with Mass Production and Customization Production, the objectives of MC are analyzed. It is pointed out that the core objectives of MC are to realize in dividuation customization, low cost, quick response to market demands. The modul arization theory is simply introduced. Based on the characteristics of modular ization, the mechanism of realizing MC with modularization is analyzed. The in dividuation customization can be realized with the different combinations of mod ules. The low cost can be realized with the scale economy and the category econo my of modules. The quick response can be realized with standard modules and its interfaces. So, the modularization is a kind of effective method in realizing MC . The modularization for MC is a systems engineering. With product modularized, production organization and management and manufacturing equipment will be chang ed. In addition, the paper also proposes a Mass Customization production model w hich is based on modularization. This Mass Customization production model is con sisted of modularization of product design, specialization of manufacturing, Vir tual Enterprises based on modularizing enterprises, and modularizing manufacturi ng equipment. The module design for MC, modularizing enterprises, and reconfigur able automation manufacturing equipment are discussed, and it is pointed out tha t they are the important supports for MC.
基金financially supported by the Young Elite Scientist Sponsorship Program by CAST ( 2018QNRC001)the China Postdoctoral Science Foundation ( 2018M631172)
文摘It is necessary to investigate the characteristics of Mesenchymal stem cells(MSCs)derived exosomes,and especially their application in tissue regeneration.Previous studies have shown that inflammatory stimulation enhanced the secretion of MSC-derived exosomes with stronger anti-inflammatory protein,cytokine profiles,and functional RNA via altering COX2/PGE2 pathway.Recently,accumulating evidence has also revealed that biophysical cues(especially biomechanical cues)in cell microenvironment have significant effects not only on cells but also on their exosomes.It has been reported that applying bi-axial strain to MSCs induces formation of a stiffer cytoskeleton through mTORC2 signaling,which biases against adipogenic differentiation and toward osteoblastogenesis.At the same time,For example,dimensionality,composition and stiffness of the extracellular matrix(ECM)has been proved to affect the size and composition of exosomes secreted by cancer cells.However,the effects of biomechanical cues in the three-dimensional(3D)microenvironment on stem cell-derived exosomes remains to be unveiled.Therefore,it is important to understand the roles of 3D cell mechanical microenvironment in regulating the characteristics of stem cell-derived exosomes and develop more efficient approaches to enhance their functions.This study aimed to explore the changes in characteristics of exosomes secreted by MSCs in periodontium in response to the matrix strain in 3D.Periodontal ligament stem cells(PDLSCs)were cultured in a 3D strain microenvironment engineered with microscale magnetically stretched collagen hydrogels.The morphology,particle distribution,marker protein expression of PDLSC-derived exosomes were analyzed.Then the pro-osteogenic property of exosomes was evaluated by assessing cell viability,proliferation,migration and osteogenic differentiation of target cells,for instance human bone marrow mesenchymal stem cells(hBMSCs).Detailed characterizations revealed that PDLSC-derived exosomes in the 3D strain mi-croenvironment were with similar morphology,particle distribution and surface markers.Notably,Exosomes secreted by PDLSCs in strain microenvironment were more endocytosed by hBMSCs and were more potent in improving proliferation and migration of hBMSCs,comparing with PDLSCs in non-strain environment.Alizarin red staining and molecular biology experiments confirmed that treatment of exosomes secreted by PDLSCs under mechanical stimulation led to a significant increase in osteogenic differentiation of hBMSCs in vitro.Meanwhile,in vivo study also indicated that PDLSC-derived exosomes obtained from the 3D strain microenvironment could obviously promote new bone formation.Our findings revealed that mechanical cues profoundly affected the characteristics of PDLSC-derived exosomes,especially for their bio-activity,providing a foundation for using the 3D mechanical microenvironment to enhance the osteo-inductive functions of stem cell-derived exosomes in cell-free therapy for bone regeneration.
基金This work was patially supported by the Thailand Research Fund under the grant number RSA6080051,College of Advanced Manufacturing Innovation(AMD),and King Mongkut's Institute of Technology Ladkrabang(KMIIL),Thailand.
文摘A reduction in the track width of magnetic recording systems results in a welcome increase in Areal Density(AD),but can severely deteriorate system performance in the unfortunate appearance of extreme Inter-Track Interference(ITI).The effect of severe ITI may be mitigated by using coding schemes.In this paper,therefore,we present a rate-5/62-Dimensional(2D)modulation code based on a proposed Single-Reader/Two-track Reading(SRTR)technique to cope with this serious problem in staggered Bit-Pattemed Magnetic Recording(BPMR)systems.We then evaluate the Bit-Error Rate(BER)performance of the proposed system in the presence of media noises,e.g.,position and size fluctuations.Our simulation results indicate that,at the same User Density(UD),the proposed system performs better than an uncoded system by about 1.0 dB at the BER of 105 and is also superior to the conventional recording system.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.
基金support from the Chinese Scholarship Council(201706220080)for W.H.the Natural Science Foundation of Hunan Province(2019JJ50526)for C.P.+1 种基金The Danish Council for Independent Research for the YDUN project(DFF 4093-00297)to J.Z.Villum Experiment(grant No.35844)for X.X.
文摘Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.