期刊文献+
共找到3,504篇文章
< 1 2 176 >
每页显示 20 50 100
Probabilistic Teleportation of Multi-particle d-Level Quantum State 被引量:4
1
作者 CAOMin ZHUShi-Qun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第5期803-805,共3页
The general scheme for teleportation of a multi-particle d-level quantum state is presented when m pairs of partially entangled particles are utilized as quantum channels. The probabilistic teleportation can be achiev... The general scheme for teleportation of a multi-particle d-level quantum state is presented when m pairs of partially entangled particles are utilized as quantum channels. The probabilistic teleportation can be achieved with a successful probability of d-1∏N=0(CN0)2/dM,which is determined by the smallest coefficients of each entangled channels. 展开更多
关键词 多粒子系统 概率传输 d-级量子态 量子力学
下载PDF
Verifiable quantum secret sharing scheme based on orthogonal product states
2
作者 白晨明 刘璐 张素娟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期178-187,共10页
In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional produc... In the domain of quantum cryptography,the implementation of quantum secret sharing stands as a pivotal element.In this paper,we propose a novel verifiable quantum secret sharing protocol using the d-dimensional product state and Lagrange interpolation techniques.This protocol is initiated by the dealer Alice,who initially prepares a quantum product state,selected from a predefined set of orthogonal product states within the C~d■C~d framework.Subsequently,the participants execute unitary operations on this product state to recover the underlying secret.Furthermore,we subject the protocol to a rigorous security analysis,considering both eavesdropping attacks and potential dishonesty from the participants.Finally,we conduct a comparative analysis of our protocol against existing schemes.Our scheme exhibits economies of scale by exclusively employing quantum product states,thereby realizing significant cost-efficiency advantages.In terms of access structure,we adopt a(t, n)-threshold architecture,a strategic choice that augments the protocol's practicality and suitability for diverse applications.Furthermore,our protocol includes a rigorous integrity verification mechanism to ensure the honesty and reliability of the participants throughout the execution of the protocol. 展开更多
关键词 quantum secret sharing quantum product state threshold scheme unitary operations
下载PDF
Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments
3
作者 Mandal Manoj Kumar Choudhury Binayak S. Samanta Soumen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期169-177,共9页
We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is know... We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform. 展开更多
关键词 multi-qubit entangled channel quantum remote state preparation noisy environments weak and reversal measurements
下载PDF
Bound State Description of Particles from a Quantum Field Theory of Fermions and Bosons, Compatible with Relativity
4
作者 Hans-Peter Morsch 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期562-573,共12页
Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix... Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected. 展开更多
关键词 quantum Field Theory of Fermion and Boson Fields Hadrons and Leptons Described as Bound states of Relativistic Fermions and Bosons Leading to a Total Energy Equal to Zero
下载PDF
Novel traveling quantum anonymous voting scheme via GHZ states
5
作者 赵文浩 姜敏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期97-102,共6页
Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle... Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle sequence to encode his/her voting content.The voters have multiple ballot items to choose rather than just binary options“yes”or“no”.After counting votes phase,any participant who is interested in voting results can obtain the voting results.To improve the efficiency of the traveling quantum anonymous voting scheme,an optimization method based on grouping strategy is also presented.Compared with the most existing traveling quantum voting schemes,the proposed scheme is more practical because of its privacy,verifiability and non-repeatability.Furthermore,the security analysis shows that the proposed traveling quantum anonymous voting scheme can prevent various attacks and ensure high security. 展开更多
关键词 quantum anonymous voting quantum secure communication GHZ states verifiability PRIVACY
下载PDF
Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
6
作者 李恒梅 杨保华 +1 位作者 袁洪春 许业军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期311-318,共8页
A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of ... A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs. 展开更多
关键词 optomechanical system quantum scissors device quantum state engineering linear entropy
下载PDF
Direct measurement of nonlocal quantum states without approximation
7
作者 杨冈 杨然 +1 位作者 龚彦晓 祝世宁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期252-256,共5页
Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with recons... Efficient acquiring information from a quantum state is important for research in fundamental quantum physics and quantum information applications. Instead of using standard quantum state tomography method with reconstruction algorithm, weak values were proposed to directly measure density matrix elements of quantum state. Recently, similar to the concept of weak value, modular values were introduced to extend the direct measurement scheme to nonlocal quantum wavefunction. However, this method still involves approximations, which leads to inherent low precision. Here, we propose a new scheme which enables direct measurement for ideal value of the nonlocal density matrix element without taking approximations. Our scheme allows more accurate characterization of nonlocal quantum states, and therefore has greater advantages in practical measurement scenarios. 展开更多
关键词 direct measurement quantum tomography nonlocal quantum state
下载PDF
Quantum Oblivious Transfer with Reusable Bell State
8
作者 Shu-Yu Kuo Kuo-Chun Tseng +1 位作者 Yao-Hsin Chou Fan-Hsun Tseng 《Computers, Materials & Continua》 SCIE EI 2023年第1期915-932,共18页
In cryptography,oblivious transfer(OT)is an important multiparty cryptographic primitive and protocol,that is suitable for many upperlayer applications,such as secure computation,remote coin-flipping,electrical contra... In cryptography,oblivious transfer(OT)is an important multiparty cryptographic primitive and protocol,that is suitable for many upperlayer applications,such as secure computation,remote coin-flipping,electrical contract signing and exchanging secrets simultaneously.However,some nogo theorems have been established,indicating that one-out-of-two quantum oblivious transfer(QOT)protocols with unconditional security are impossible.Fortunately,some one-out-of-two QOT protocols using the concept of Crepeau’s reduction have been demonstrated not to conform to Lo’s no-go theorem,but these protocols require more quantum resources to generate classical keys using all-or-nothing QOT to construct one-out-of-two QOT.This paper proposes a novel and efficient one-out-of-two QOT which uses quantum resources directly instead of wasting unnecessary resources to generate classical keys.The proposed protocol is not covered by Lo’s no-go theorem,and it is able to check the sender’s loyalty and avoid the attack from the receiver.Moreover,the entangled state of the proposed protocol is reusable,so it can provide more services for the participants when necessary.Compared with otherQOT protocols,the proposed protocol is more secure,efficient,and flexible,which not only can prevent external and internal attacks,but also reduce the required resources and resource distribution time. 展开更多
关键词 quantum cryptography information security quantum oblivious transfer bell state
下载PDF
Effective dynamics and quantum state engineering by periodic kicks
9
作者 施志成 陈阵 +2 位作者 王建辉 夏岩 衣学喜 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期374-388,共15页
We study the kick dynamics of periodically driven quantum systems,and provide a time-independent effective Hamiltonian with the analytical form to reasonably describe the effective dynamics in a long timescale.It is s... We study the kick dynamics of periodically driven quantum systems,and provide a time-independent effective Hamiltonian with the analytical form to reasonably describe the effective dynamics in a long timescale.It is shown that the effective coupling strength can be much larger than the coupling strength of the original system in some parameter regions,which stems from the zero time duration of kicks.Furthermore,different regimes can be transformed from and to each other in the same three-level system by only modulating the period of periodic kicks.In particular,the population of excited states can be selectively suppressed in periodic kicks,benefiting from the large detuning regime of the original system.Finally,some applications and physical implementation of periodic kicks are demonstrated in quantum systems.These unique features would make periodic kicks become a powerful tool for quantum state engineering. 展开更多
关键词 periodic driving δfunction quantum state engineering
下载PDF
Comparison of differential evolution, particle swarm optimization,quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
10
作者 程鑫 鲁秀娟 +1 位作者 刘亚楠 匡森 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期53-59,共7页
Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), ... Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), particle swarm optimization(PSO), quantum-behaved particle swarm optimization(QPSO), and quantum evolutionary algorithm(QEA).We compare their control performance and point out their differences. By sampling and learning for uncertain quantum systems, the robustness of control pulses found by these four algorithms is also demonstrated and compared. The resulting research shows that the QPSO nearly outperforms the other three algorithms for all the performance criteria considered.This conclusion provides an important reference for solving complex quantum control problems by optimization algorithms and makes the QPSO be a powerful optimization tool. 展开更多
关键词 quantum control state preparation intelligent optimization algorithm
下载PDF
Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
11
作者 周雨 李宏伟 +5 位作者 周淳 汪洋 陆宜飞 江木生 张晓旭 鲍皖苏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期254-260,共7页
Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections... Quantum key distribution provides an unconditional secure key sharing method in theory,but the imperfect factors of practical devices will bring security vulnerabilities.In this paper,we characterize the imperfections of the sender and analyze the possible attack strategies of Eve.Firstly,we present a quantized model for distinguishability of decoy states caused by intensity modulation.Besides,considering that Eve may control the preparation of states through hidden variables,we evaluate the security of preparation in practical quantum key distribution(QKD)scheme based on the weak-randomness model.Finally,we analyze the influence of the distinguishability of decoy state to secure key rate,for Eve may conduct the beam splitting attack and control the channel attenuation of different parts.Through the simulation,it can be seen that the secure key rate is sensitive to the distinguishability of decoy state and weak randomness,especially when Eve can control the channel attenuation. 展开更多
关键词 weak randomness quantum key distribution distinguishable decoy state
下载PDF
Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
12
作者 周江平 周媛媛 +1 位作者 周学军 暴轩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期188-194,共7页
Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant... Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation. 展开更多
关键词 quantum key distribution phase matching protocol statistical fluctuation analysis decoy state
下载PDF
Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
13
作者 胡睿梓 祝圣凯 +9 位作者 张鑫 周圆 倪铭 马荣龙 罗刚 孔真真 王桂磊 曹刚 李海欧 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期274-279,共6页
The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout pr... The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future. 展开更多
关键词 quantum computation quantum dot quantum state readout
下载PDF
Optical-Microwave Entanglement Paves the Way for Distributed Quantum Computation
14
作者 胡志刚 许凯 +1 位作者 张玉祥 李贝贝 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期21-24,共4页
Over the past few years,quantum computation based on superconducting circuits has achieved remarkable progress.A milestone occurred in 2019 when Google released Sycamore,a processor with 54 qubits,and claimed quantum ... Over the past few years,quantum computation based on superconducting circuits has achieved remarkable progress.A milestone occurred in 2019 when Google released Sycamore,a processor with 54 qubits,and claimed quantum supremacy by performing in just 100 s a specific computation which would take a classical supercomputer,as stated by Google’s team,10000 years to complete.[1]In 2021,a strong quantum advantage was demonstrated by Pan and his colleagues from the University of Science and Technology of China,using a quantum processor named Zuchongzhi,which has 66 functional qubits.[2]This year,the record of the number of quantum qubits has been lifted to 127 qubits.[3]Indeed,the number of qubits is limited to a few hundreds due to the finite space of dilution refrigerators,where the superconducting qubits must be placed to be isolated from thermal noise.However,this number is still several orders of magnitude away from the requirement of quantum error correction,which is essential for general-purpose quantum computers.[4–8]. 展开更多
关键词 quantum stated CORRECTION
下载PDF
Stationary Measures of Three-State Quantum Walks with Defect on the One-Dimension Lattice
15
作者 Jinling Gao Mingjun Zhang 《Open Journal of Applied Sciences》 CAS 2023年第4期473-482,共10页
In this paper, we focus on the space-inhomogeneous three-state on the one-dimension lattice, a one-phase model and a two-phase model include. By using the transfer matrices method by Endo et al., we calculate the stat... In this paper, we focus on the space-inhomogeneous three-state on the one-dimension lattice, a one-phase model and a two-phase model include. By using the transfer matrices method by Endo et al., we calculate the stationary measure for initial state concrete eigenvalue. Finally we found the transfer matrices method is more effective for the three-state quantum walks than the method obtained by Kawai et al. 展开更多
关键词 Three-state quantum Walks Stationary Measure One-Phase TWO-PHASE Transfer Matrices
下载PDF
Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels 被引量:20
16
作者 彭家寅 莫智文 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期160-167,共8页
We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful ... We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents. 展开更多
关键词 quantum information quantum teleportation quantum state sharing multi-particle state
下载PDF
Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum 被引量:18
17
作者 王乐 赵生妹 +1 位作者 巩龙延 程维文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期238-245,共8页
In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protoc... In this paper, we propose a measurement-device-independent quantum-key-distribution(MDI-QKD) protocol using orbital angular momentum(OAM) in free space links, named the OAM-MDI-QKD protocol. In the proposed protocol,the OAM states of photons, instead of polarization states, are used as the information carriers to avoid the reference frame alignment, the decoy-state is adopted to overcome the security loophole caused by the weak coherent pulse source, and the high efficient OAM-sorter is adopted as the measurement tool for Charlie to obtain the output OAM state. Here, Charlie may be an untrusted third party. The results show that the authorized users, Alice and Bob, could distill a secret key with Charlie's successful measurements, and the key generation performance is slightly better than that of the polarization-based MDI-QKD protocol in the two-dimensional OAM cases. Simultaneously, Alice and Bob can reduce the number of flipping the bits in the secure key distillation. It is indicated that a higher key generation rate performance could be obtained by a high dimensional OAM-MDI-QKD protocol because of the unlimited degree of freedom on OAM states. Moreover,the results show that the key generation rate and the transmission distance will decrease as the growth of the strength of atmospheric turbulence(AT) and the link attenuation. In addition, the decoy states used in the proposed protocol can get a considerable good performance without the need for an ideal source. 展开更多
关键词 measurement-device-independent quantum key distribution orbital angular momentum atmospheric turbulence decoy states
下载PDF
An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication 被引量:10
18
作者 刘文杰 陈汉武 +3 位作者 马廷淮 李志强 刘志昊 胡文博 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4105-4109,共5页
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw... A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer. 展开更多
关键词 deterministic secure quantum communication cluster state identity authentication
下载PDF
Hierarchical and probabilistic quantum state sharing via a non-maximally entangled |χ〉state 被引量:21
19
作者 彭家寅 柏明强 莫智文 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期74-79,共6页
A scheme that probabilistically realizes hierarchical quantum state sharing of an arbitrary unknown qubit state with a four-qubit non-maximally entangled |χ state is presented in this paper. In the scheme, the sender... A scheme that probabilistically realizes hierarchical quantum state sharing of an arbitrary unknown qubit state with a four-qubit non-maximally entangled |χ state is presented in this paper. In the scheme, the sender Alice distributes a quantum secret with a Bell-state measurement and publishes her measurement outcomes via a classical channel to three agents who are divided into two grades. One agent is in the upper grade, while the other two agents are in the lower grade. Then by introducing an ancillary qubit, the agent of the upper grade only needs the assistance of any one of the other two agents for probabilistically obtaining the secret, while an agent of the lower grade needs the help of both the other two agents by using a controlled-NOT operation and a proper positive operator-valued measurement instead of the usual projective measurement. In other words, the agents of two different grades have different authorities to reconstruct Alice's secret in a probabilistic manner. The scheme can also be modified to implement the threshold-controlled teleportation. 展开更多
关键词 |χ〉 state hierarchical quantum state sharing asymmetetric distribution positive operator-valued measurement
下载PDF
Entanglement diversion and quantum teleportation of entangled coherent states 被引量:5
20
作者 蔡新华 郭杰荣 +1 位作者 聂建军 贾金平 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第3期488-491,共4页
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitu... The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information. 展开更多
关键词 entangled coherent state entanglement diversion quantum teleportation detection of photon
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部