The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by...The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.展开更多
in arid and semi-arid areas, artificial recharge is a key technology in groundwater resources management, and a reliable estimate of artificial recharge is necessary to its sustainable development. Several methods are...in arid and semi-arid areas, artificial recharge is a key technology in groundwater resources management, and a reliable estimate of artificial recharge is necessary to its sustainable development. Several methods are available to estimate the artificial recharge; however, most of them require field data or model parameters, thus limiting their applications. To overcome this limitation, we presented an analytical method to estimate the artificial recharge through monitoring the water release by piezometer and analysing the controlling factors of the artificial recharge from a hill dam in Tunisia. A total of 97 measurements of water flow in the streambed recorded from 4 gauging stations were analysed. Results indicated that the average infiltration velocity ranged from 0.043 to 0.127 m/d and the infiltration index varied from 7.6 to 11.8 L/(s.km). Pearson's correlation coefficient analysis shows that the infiltration index, the stream gradient, the thickness of unsaturated zone, the number of infiltration pond, the stream geometry, and the water flow rate were found to be the main factors in determining the infiltration. The high correlation coefficients (0.908 for the number of infiltration pond and 0.999 for the stream geometry) mean that the number of infiltration pond and the stream geometry are the most influential factors. Time variations of groundwater level were used to analyze the recharge effects on the piezometry of aquifer. The analysis showed that during the artificial recharge, the water table increased at a rate of 5 mm/d and that the increase was limited to the area surrounding the recharge site. Based on the results of the study, building infiltration ponds along streambed and improving the potential of rainwater harvesting over the study area are recommended.展开更多
Ground penetrating radar surveys of technical condition of Karatomar and Aktobe water storage basins on the river Tobol are shown. In this article we have shown that dams have problems with cavities and identified lon...Ground penetrating radar surveys of technical condition of Karatomar and Aktobe water storage basins on the river Tobol are shown. In this article we have shown that dams have problems with cavities and identified longitudinal dimensions of anomalous zones of decompression.展开更多
To determine and map the subsurface conditions of a dam, a 2D electrical resistivity tomography study was carried out within the two flanks of Zaria dam at Shika. This was done to ascertain if the variations in the vo...To determine and map the subsurface conditions of a dam, a 2D electrical resistivity tomography study was carried out within the two flanks of Zaria dam at Shika. This was done to ascertain if the variations in the volume of water content in the dam is due to an anomalous seepage beneath the subsurface or seasonal effects. On the basis of the interpretation of the acquired data, various zones of relatively uniform resistivity values were mapped and identified. The first zone is characterized by moderate resistivity values of 150 - 600 ohm-m. It represents unsaturated topsoil with thicknesses varying from 1 - 4.5 m. The second (intermediate depth) resistivity zone, with values ranging from 5 - 100 ohm-m and thickness varying from 3.5 - 10 m, represents a silt clay layer with high moisture content. The third resistivity zone represents fairly weathered granite and is characterized by relatively high resistivity values ranging from 700 - 6000 ohm-m. The available borehole log data correlated well with the pseudo-sections in relation to the obtained resistivity values and depth. Zones of relatively low resistivity within the bedrock are interpreted to represent potential seepage pathways. Hence, this geophysical method can be successfully used to delineate and map these seepage pathways within the subsurface of the earth dam.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.50579010, 50539010)the National Basic Research Program of China (973 Program) (No.2002CB412707)the National Basic Research Program of Ministry of Water Resources, China (No.CT200612)
文摘The effect zones of layer face for RCC (rolled control concrete) dam have gradual change characteristics. Based on the analysis thought of complex material, a model was built to analyze above principle of RCC dam by use of series-wound and shunt-wound connection. Some methods were proposed to determine the instantaneous Young's modulus, delayed Young's modulus and viscosity coefficient of effect zones of layer face. Above models and methods were used to mine the principle of gradual change of key calculation parameters which can response the characteristics of effect zones. The principle of gradual change was described. A model was established to analyze the threedimensional viscoelastic problem of RCC dam. Above programs were developed. The examples show that the proposed models and methods to determine the key calculation parameters of effect zones can reflect the status of RCC dam accurately.
文摘in arid and semi-arid areas, artificial recharge is a key technology in groundwater resources management, and a reliable estimate of artificial recharge is necessary to its sustainable development. Several methods are available to estimate the artificial recharge; however, most of them require field data or model parameters, thus limiting their applications. To overcome this limitation, we presented an analytical method to estimate the artificial recharge through monitoring the water release by piezometer and analysing the controlling factors of the artificial recharge from a hill dam in Tunisia. A total of 97 measurements of water flow in the streambed recorded from 4 gauging stations were analysed. Results indicated that the average infiltration velocity ranged from 0.043 to 0.127 m/d and the infiltration index varied from 7.6 to 11.8 L/(s.km). Pearson's correlation coefficient analysis shows that the infiltration index, the stream gradient, the thickness of unsaturated zone, the number of infiltration pond, the stream geometry, and the water flow rate were found to be the main factors in determining the infiltration. The high correlation coefficients (0.908 for the number of infiltration pond and 0.999 for the stream geometry) mean that the number of infiltration pond and the stream geometry are the most influential factors. Time variations of groundwater level were used to analyze the recharge effects on the piezometry of aquifer. The analysis showed that during the artificial recharge, the water table increased at a rate of 5 mm/d and that the increase was limited to the area surrounding the recharge site. Based on the results of the study, building infiltration ponds along streambed and improving the potential of rainwater harvesting over the study area are recommended.
文摘Ground penetrating radar surveys of technical condition of Karatomar and Aktobe water storage basins on the river Tobol are shown. In this article we have shown that dams have problems with cavities and identified longitudinal dimensions of anomalous zones of decompression.
文摘To determine and map the subsurface conditions of a dam, a 2D electrical resistivity tomography study was carried out within the two flanks of Zaria dam at Shika. This was done to ascertain if the variations in the volume of water content in the dam is due to an anomalous seepage beneath the subsurface or seasonal effects. On the basis of the interpretation of the acquired data, various zones of relatively uniform resistivity values were mapped and identified. The first zone is characterized by moderate resistivity values of 150 - 600 ohm-m. It represents unsaturated topsoil with thicknesses varying from 1 - 4.5 m. The second (intermediate depth) resistivity zone, with values ranging from 5 - 100 ohm-m and thickness varying from 3.5 - 10 m, represents a silt clay layer with high moisture content. The third resistivity zone represents fairly weathered granite and is characterized by relatively high resistivity values ranging from 700 - 6000 ohm-m. The available borehole log data correlated well with the pseudo-sections in relation to the obtained resistivity values and depth. Zones of relatively low resistivity within the bedrock are interpreted to represent potential seepage pathways. Hence, this geophysical method can be successfully used to delineate and map these seepage pathways within the subsurface of the earth dam.