Al2O3/SiO2 multilayer high-reflective(HR) mirrors at 355 nm were prepared by electron beam evaporation, and post-irradiated with Ar/O mixture plasma. The surface defect density, reflective spectra, and laser-induced...Al2O3/SiO2 multilayer high-reflective(HR) mirrors at 355 nm were prepared by electron beam evaporation, and post-irradiated with Ar/O mixture plasma. The surface defect density, reflective spectra, and laser-induced damage characteristics were measured using optical microscopy, spectrophotometry, a damage testing system, and scanning electron microscopy(SEM), respectively. The results indicated that moderate-time of irradiation enhanced the laser-induced damage threshold(LIDT) of the mirror, but prolonged irradiation produced surface defects, resulting in LIDT degradation. LIDT of the mirrors initially increased and subsequently decreased with the plasma processing time. SEM damage morphologies of the mirrors revealed that nanoscale absorbing defects in sub-layers was one of the key factors limiting the improvement of LIDT in 355 nm HR mirror.展开更多
The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated. The HfO2/SiO2 dielectric mirrors are deposited by electron beam evaporation (EBE)....The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated. The HfO2/SiO2 dielectric mirrors are deposited by electron beam evaporation (EBE). Laser damage testing is carried out on both the 1-on-1 and S-on-1 regimes using 355-nm pulsed laser at a duration of 8 ns. It is found that the single-shot laser-induced damage threshold (LIDT) is much higher than the multi-shot LIDT. In the multi-shot mode, the main factor influencing LIDT is the accumulation of irreversible laser-induced defects and native defects. The surface morphologies of the samples are observed by optical microscopy. Moreover, the number of laser-induced defects affects the damage probability of the samples. A correlative model based on critical conduction band (CB) electron density (ED) is presented to simulate the multi-shot damage behavior.展开更多
基金Funded by the National Natural Science Foundation of China(No.11174208)the NSAF(No.U1430121)the Shenzhen Basic Research Project(Nos.JCYJ20150529164656098,ZDSY20170228105421966)
文摘Al2O3/SiO2 multilayer high-reflective(HR) mirrors at 355 nm were prepared by electron beam evaporation, and post-irradiated with Ar/O mixture plasma. The surface defect density, reflective spectra, and laser-induced damage characteristics were measured using optical microscopy, spectrophotometry, a damage testing system, and scanning electron microscopy(SEM), respectively. The results indicated that moderate-time of irradiation enhanced the laser-induced damage threshold(LIDT) of the mirror, but prolonged irradiation produced surface defects, resulting in LIDT degradation. LIDT of the mirrors initially increased and subsequently decreased with the plasma processing time. SEM damage morphologies of the mirrors revealed that nanoscale absorbing defects in sub-layers was one of the key factors limiting the improvement of LIDT in 355 nm HR mirror.
文摘The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated. The HfO2/SiO2 dielectric mirrors are deposited by electron beam evaporation (EBE). Laser damage testing is carried out on both the 1-on-1 and S-on-1 regimes using 355-nm pulsed laser at a duration of 8 ns. It is found that the single-shot laser-induced damage threshold (LIDT) is much higher than the multi-shot LIDT. In the multi-shot mode, the main factor influencing LIDT is the accumulation of irreversible laser-induced defects and native defects. The surface morphologies of the samples are observed by optical microscopy. Moreover, the number of laser-induced defects affects the damage probability of the samples. A correlative model based on critical conduction band (CB) electron density (ED) is presented to simulate the multi-shot damage behavior.