This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial ...This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.展开更多
Largest portion of the bridge stock in almost any country and bridge owning organisation consists on ordinary bridges that has short or medium spans and are now deteriorating due to aging, etc. Therefore, it is becomi...Largest portion of the bridge stock in almost any country and bridge owning organisation consists on ordinary bridges that has short or medium spans and are now deteriorating due to aging, etc. Therefore, it is becoming an important social concern to develop and put to practical use simple and efficient health monitoring systems for existing short and medium span (10 - 30 m) bridges. In this paper, one practical solution to the problem for condition assessment of short and medium span bridges was discussed. A vehicle-based measurement with a public bus as part of a public transit system (called “Bus monitoring system”) has been developed to be capable of detecting damage that may affect the structural safety of a bridge from long term vibration measurement data collected while the vehicle (bus) crossed the target bridges. This paper systematically describes how the system has been developed. The bus monitoring system aims to detect the transition from the damage acceleration period, in which the structural safety of an aged bridge declines sharply, to the deterioration period by continually monitoring the bridge of interest. To evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. The verification results thus obtained are also described in this paper. This study also evaluates the sensitivity of “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. As the results, it will be able to make a rational long-term health monitoring system for existing short and mediumspan bridges, and then the system helps bridge administrators to establish the rational maintenance strategies.展开更多
The health conditions of highway bridges is critical for sustained transportation operations.US federal government mandates that all bridges built with public funds are to be inspected visually every two years. There ...The health conditions of highway bridges is critical for sustained transportation operations.US federal government mandates that all bridges built with public funds are to be inspected visually every two years. There is a growing consensus that additional rapid and non-intrusive methods for bridge damage evaluation are needed.This paper explores the potential of applying ground-based laser scanners for bridge damage evaluation. LiDAR has the potential of providing high-density,full-field surface static imaging.Hence,it can generate volumetric quantification of concrete corrosion or steel erosion.By recording object surface topology,LiDAR can detect different damages on the bridge structure and differentiate damage types according to the surface flatness and smoothness.To determine the effectiveness of LiDAR damage detection,two damage detection algorithms are presented and compared using scans on actual bridge damages.The results demonstrate and validate LiDAR damage quantification,which can be a powerful tool for bridge condition evaluation.展开更多
Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components...Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components is detrimental to the performance of the entire bridge,furthermore,detecting the local abnormality at an early stage is difficult.This paper explores a novel damage detection method for long-span bridges by incorporating stress influence lines(SILs)in control charts,and validates the efficacy of the method through a case study of the Tsing Ma Suspension Bridge.Damage indices based on SILs are subsequently proposed and applied to hypothetical damage scenarios in which one or two critical bridge components are subjected to severe damage.The comparison study suggests that the first-order difference of SIL change is an accurate indicator for location of the damage.To some extent,different levels of damage can be quantified by using SILs incorporating with X-bar control chart.Results of this study indicate that the proposed SIL-based method offers a promising technique for damage detection in long-span bridges.展开更多
Strain Energy of the structure can be changed with the damage at the damage location.The accurate detection of the damage location using this index in a force system is dependent on the degree of accuracy in determini...Strain Energy of the structure can be changed with the damage at the damage location.The accurate detection of the damage location using this index in a force system is dependent on the degree of accuracy in determining the structure deformation function before and after damage.The use of modal-based methods to identify damage in complex bridges is always associated with problems due to the need to consider the effects of higher modes and the adverse effct of operational conditions on the extraction of structural modal parameters.In this paper,the deformation of the structure was determined by the concept of influence line using the Betti-Maxwell theory.Then two damage detection indicators were developed based on strain energy variations.These indices were presented separately for bending and torsion changes.Finite element analysis of a five-span concrete curved bridge was done to validate the stated methods.Damage was simulated by decreasing stiffness at different sections of the deck.The response regarding displacement ofa point on the deck was measured along each span by passing a moving load on the bridge at very low speeds.Indicators of the strain energy extracted from displacement influence line and the strain energy extracted from the rotational displacement influence line(SERIL)were calculated for the studied bridge.The results show that the proposed methods have well identified the location of the damage by significantly reducing the number of sensors required to record the response.Also,the location of symmetric damages is detected with high resolution using SERIL.展开更多
The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Line...The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Lines(RAIL) of the arbitrary section in the benchmark is presented as the nonlinear relation between the moving load and the RAIL appeared, when the moving load is located on the damage area. The damage detection method is derived based on the Difference of the RAIL Curvature(DRAIL-C) prior to and following arbitrarily section damage in a simply supported beam with bending fuzzy stiffness consideration. The results demonstrate that the damage position can be located by the DRAIL-C graph and the damage extent can be calculated by the DRAIL-C curve peak. The simply supported box girder as a one-dimensional model and the simply supported truss bridge as a three-dimensional model with the bending fuzzy stiffness are simulated for the validity of the proposed method to be verified. The measuring point position and noise intensity effects are discussed in the simply supported box girder example. This paper provides a new consideration and technique for the damage detection of a simply supported bridge with bending fuzzy stiffness consideration.展开更多
Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for...Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.展开更多
Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.Firs...Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.展开更多
The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repair...The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repaired bridge is carried out. The diagnosis enables us to locate and detect the damage in a reinforced concrete bridge. Thus, developments of analytical predictions have been checked by modal testing techniques. Besides, the FTCS (finite time centered space) scheme is developed to solve the set of equations which can easily handle finite element matrices of a bridge model. It is shown in this study that the method is applied to detect damages as well as existing cracks in real time of a repaired bridge. To check the efficiency of the method, the repaired bridge of OuedOumazer in Algeria has been selected. It is proven that identification methods have been able to detect the exact location of damage areas to be corrected avoiding the inaccuracy from the finite element model for the mass, stiffness and loading.展开更多
A damage location method using multi-layer perceptron (MLP) is developed to diagnose the cable damage of a real long span cable-stayed bridge. Firstly, the damage patterns are defined based on dynamical calculation....A damage location method using multi-layer perceptron (MLP) is developed to diagnose the cable damage of a real long span cable-stayed bridge. Firstly, the damage patterns are defined based on dynamical calculation. The analysis of damage pattern reveals that the damage patterns caused by different damage locations have inherent distinctness, while the damage extent only linearly amplifies the damage pattern curves. And 4th, 6th and 7th order frequencies are canceled from the patterns because of their insensitiveness to cable damage. Then a MLP network is designed by trail-error method to describe the 7-D mapping space of damage pattern. Identification results prove that the properly organized MLP can grasp the damage pattern and identify the damage location.展开更多
为提高环境和运营变化(environmental and operational variations,EOV)影响下的桥梁损伤检测可靠性,结合逆非线性主成分分析(inverse nonlinear principal component analysis,INLPCA)和极值理论,提出一种新的桥梁损伤检测方法.该方法...为提高环境和运营变化(environmental and operational variations,EOV)影响下的桥梁损伤检测可靠性,结合逆非线性主成分分析(inverse nonlinear principal component analysis,INLPCA)和极值理论,提出一种新的桥梁损伤检测方法.该方法采用INLPCA对桥梁损伤特征进行建模,利用不完备健康监测数据的估计均方误差和添加神经网络训练惩罚项控制INLPCA的非线性程度.采用INLPCA对损伤特征的重构误差和马氏平方距离(Mahalanobis squared distance,MSD)建立损伤指标(ID),最后基于ID的广义极值(generalized extreme value,GEV)分布建立损伤检测阈值.以比利时KW51铁路桥和天津永和斜拉桥为例,验证所提方法的有效性.结果表明,所提方法能准确检测EOV影响下的桥梁损伤,且对不同桥型和不同损伤特征均有良好的适用性.展开更多
Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate t...Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.展开更多
基金The National Natural Science Foundation of China(No.50725828,50808041)the Natural Science Foundation of Jiangsu Province(No.BK2008312)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861011)
文摘This paper aims at successive structural damage detection of long-span bridges under changing temperature conditions.First,the frequency-temperature correlation models of bridges are formulated by means of artificial neural network techniques to eliminate the temperature effects on the measured modal frequencies.Then,the measured modal frequencies under various temperatures are normalized to a reference temperature,based on which the auto-associative network is trained to monitor signal damage occurrences by means of neural-network-based novelty detection techniques.The effectiveness of the proposed approach is examined in the Runyang Suspension Bridge using 236-day health monitoring data.The results reveal that the seasonal change of environmental temperature accounts for variations in the measured modal frequencies with averaged variances of 2.0%.And the approach exhibits good capability for detecting the damage-induced 0.1% variance of modal frequencies and it is suitable for online condition monitoring of suspension bridges.
文摘Largest portion of the bridge stock in almost any country and bridge owning organisation consists on ordinary bridges that has short or medium spans and are now deteriorating due to aging, etc. Therefore, it is becoming an important social concern to develop and put to practical use simple and efficient health monitoring systems for existing short and medium span (10 - 30 m) bridges. In this paper, one practical solution to the problem for condition assessment of short and medium span bridges was discussed. A vehicle-based measurement with a public bus as part of a public transit system (called “Bus monitoring system”) has been developed to be capable of detecting damage that may affect the structural safety of a bridge from long term vibration measurement data collected while the vehicle (bus) crossed the target bridges. This paper systematically describes how the system has been developed. The bus monitoring system aims to detect the transition from the damage acceleration period, in which the structural safety of an aged bridge declines sharply, to the deterioration period by continually monitoring the bridge of interest. To evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. The verification results thus obtained are also described in this paper. This study also evaluates the sensitivity of “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. As the results, it will be able to make a rational long-term health monitoring system for existing short and mediumspan bridges, and then the system helps bridge administrators to establish the rational maintenance strategies.
基金supported by grant number DTOS59-07-H-0005 from the United States Department of Transportation(USDOT), Research and Innovative Technology Administration (RITA)
文摘The health conditions of highway bridges is critical for sustained transportation operations.US federal government mandates that all bridges built with public funds are to be inspected visually every two years. There is a growing consensus that additional rapid and non-intrusive methods for bridge damage evaluation are needed.This paper explores the potential of applying ground-based laser scanners for bridge damage evaluation. LiDAR has the potential of providing high-density,full-field surface static imaging.Hence,it can generate volumetric quantification of concrete corrosion or steel erosion.By recording object surface topology,LiDAR can detect different damages on the bridge structure and differentiate damage types according to the surface flatness and smoothness.To determine the effectiveness of LiDAR damage detection,two damage detection algorithms are presented and compared using scans on actual bridge damages.The results demonstrate and validate LiDAR damage quantification,which can be a powerful tool for bridge condition evaluation.
基金supported by the National Natural Science Foundation of China(Grant Nos.51108395,51378445 and 51178366)the Fundamental Research Funds for the Central Universities(Grant No.2012121032)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(Grant No.DQJJ201315)
文摘Numerous long-span bridges have been built throughout the world in recent years.These bridges are progressively damaged by continuous usage throughout their long service life.The failure of local structural components is detrimental to the performance of the entire bridge,furthermore,detecting the local abnormality at an early stage is difficult.This paper explores a novel damage detection method for long-span bridges by incorporating stress influence lines(SILs)in control charts,and validates the efficacy of the method through a case study of the Tsing Ma Suspension Bridge.Damage indices based on SILs are subsequently proposed and applied to hypothetical damage scenarios in which one or two critical bridge components are subjected to severe damage.The comparison study suggests that the first-order difference of SIL change is an accurate indicator for location of the damage.To some extent,different levels of damage can be quantified by using SILs incorporating with X-bar control chart.Results of this study indicate that the proposed SIL-based method offers a promising technique for damage detection in long-span bridges.
文摘Strain Energy of the structure can be changed with the damage at the damage location.The accurate detection of the damage location using this index in a force system is dependent on the degree of accuracy in determining the structure deformation function before and after damage.The use of modal-based methods to identify damage in complex bridges is always associated with problems due to the need to consider the effects of higher modes and the adverse effct of operational conditions on the extraction of structural modal parameters.In this paper,the deformation of the structure was determined by the concept of influence line using the Betti-Maxwell theory.Then two damage detection indicators were developed based on strain energy variations.These indices were presented separately for bending and torsion changes.Finite element analysis of a five-span concrete curved bridge was done to validate the stated methods.Damage was simulated by decreasing stiffness at different sections of the deck.The response regarding displacement ofa point on the deck was measured along each span by passing a moving load on the bridge at very low speeds.Indicators of the strain energy extracted from displacement influence line and the strain energy extracted from the rotational displacement influence line(SERIL)were calculated for the studied bridge.The results show that the proposed methods have well identified the location of the damage by significantly reducing the number of sensors required to record the response.Also,the location of symmetric damages is detected with high resolution using SERIL.
基金the National Natural Science Foundation of China(Nos.51608245 and 51568041)the Natural Science Foundation of Gansu Province(No.148RJZA026)
文摘The benchmark of a simply supported beam with damage and bending fuzzy stiffness consideration is established to be utilized for damage detection. The explicit expression describing the Rotational Angle Influence Lines(RAIL) of the arbitrary section in the benchmark is presented as the nonlinear relation between the moving load and the RAIL appeared, when the moving load is located on the damage area. The damage detection method is derived based on the Difference of the RAIL Curvature(DRAIL-C) prior to and following arbitrarily section damage in a simply supported beam with bending fuzzy stiffness consideration. The results demonstrate that the damage position can be located by the DRAIL-C graph and the damage extent can be calculated by the DRAIL-C curve peak. The simply supported box girder as a one-dimensional model and the simply supported truss bridge as a three-dimensional model with the bending fuzzy stiffness are simulated for the validity of the proposed method to be verified. The measuring point position and noise intensity effects are discussed in the simply supported box girder example. This paper provides a new consideration and technique for the damage detection of a simply supported bridge with bending fuzzy stiffness consideration.
基金Project(2009BAG15B03) supported by the National Science and Technology Ministry of ChinaProjects(51178100, 51078080) supported by the National Natural Science Foundation of China+1 种基金Project(BK2011141) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(12KB02) supported by the Open Fund of the Key Laboratory for Safety Control of Bridge Engineering(Changsha University of Science and Technology), Ministry of Education, China
文摘Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.
基金Project(51078080)supported by the National Natural Science Foundation of ChinaProject(20130969010)supported by Aeronautical Science Foundation of China+1 种基金Project(2011Y03-6)supported by Traffic Transportation Technology Project of Jiangsu Province,ChinaProject(BK2012562)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.
文摘The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repaired bridge is carried out. The diagnosis enables us to locate and detect the damage in a reinforced concrete bridge. Thus, developments of analytical predictions have been checked by modal testing techniques. Besides, the FTCS (finite time centered space) scheme is developed to solve the set of equations which can easily handle finite element matrices of a bridge model. It is shown in this study that the method is applied to detect damages as well as existing cracks in real time of a repaired bridge. To check the efficiency of the method, the repaired bridge of OuedOumazer in Algeria has been selected. It is proven that identification methods have been able to detect the exact location of damage areas to be corrected avoiding the inaccuracy from the finite element model for the mass, stiffness and loading.
文摘A damage location method using multi-layer perceptron (MLP) is developed to diagnose the cable damage of a real long span cable-stayed bridge. Firstly, the damage patterns are defined based on dynamical calculation. The analysis of damage pattern reveals that the damage patterns caused by different damage locations have inherent distinctness, while the damage extent only linearly amplifies the damage pattern curves. And 4th, 6th and 7th order frequencies are canceled from the patterns because of their insensitiveness to cable damage. Then a MLP network is designed by trail-error method to describe the 7-D mapping space of damage pattern. Identification results prove that the properly organized MLP can grasp the damage pattern and identify the damage location.
基金The National Key Research and Development Program of China(No.2022YFB2602105)the National Natural Science Foundation of China (No.52378295)+2 种基金Guangdong Province Natural Science Foundation(No.2024A1515010296)Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering (No.2023B1212010004)Shenzhen Science and Technology Program (No.KQTD20210811090112003)。
文摘Based on the method of strain mode, damage identification of continuous beam bridges by comparing the variance of several curves of strain modes difference is studied. Three cases of numerical simulation demonstrate that the proposed method is applicable to detecting many a damage in a continuous beam bridge, which accurately identifies the damaged positions of the bridge, and detects the damage severity of an element by its according peak value of the curve of strain modes difference that is found to increase with the increasing damage severity.