期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Tensile Mechanical Behavior and Failure Mechanism of a Plain-Woven SiCf/SiC Composites at Room and Elevated Temperatures
1
作者 Jianze He Xuefeng Teng +3 位作者 Xiao’an Hu Xiao Luo Qi Zeng Xueqiang Cao 《Journal of Materials Science and Chemical Engineering》 2024年第4期67-83,共17页
Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I... Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes. 展开更多
关键词 Plain-Woven SiCf/SiC Composites damage and failure Analysis Stitching Hole
下载PDF
Energy dissipation of coal and rock during damage and failure process based on EMR 被引量:16
2
作者 Song Dazhao Wang Enyuan +2 位作者 Li Zhonghui Liu Jie Xu Wenquan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期787-795,共9页
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t... The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency. 展开更多
关键词 Energy dissipation Electromagnetic radiation Coal and rock damage and failure Rock burst
下载PDF
Study on the critical stress threshold of weakly cemented sandstone damage based on the renormalization group method 被引量:6
3
作者 Zhaoyang Song Hongguang Ji +1 位作者 Zhiqiang Liu Lihui Sun 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期693-703,共11页
During the microstructural analysis of weakly cemented sandstone,the granule components and ductile structural parts of the sandstone are typically generalized.Considering the contact between granules in the microstru... During the microstructural analysis of weakly cemented sandstone,the granule components and ductile structural parts of the sandstone are typically generalized.Considering the contact between granules in the microstructure of weakly cemented sandstone,three basic units can be determined:regular tetrahedra,regular hexahedra,and regular octahedra.Renormalization group models with granule-and pore-centered weakly cemented sandstone were established,and,according to the renormalization group transformation rule,the critical stress threshold of damage was calculated.The results show that the renormalization model using regular octahedra as the basic units has the highest critical stress threshold.The threshold obtained by iterative calculations of the granule-centered model is smaller than that obtained by the pore-centered model.The granule-centered calculation provides the lower limit(18.12%),and the pore-centered model provides the upper limit(36.36%).Within this range,the weakly cemented sandstone is in a phase-like critical state.That is,the state of granule aggregation transforms from continuous to discrete.In the relative stress range of 18.12%-36.36%,the weakly cemented sandstone exhibits an increased proportion of high-frequency signals(by 83.3%)and a decreased proportion of low-frequency signals(by 23.6%).The renormalization calculation results for weakly cemented sandstone explain the high-low frequency conversion of acoustic emission signals during loading.The research reported in this paper has important significance for elucidating the damage mechanism of weakly cemented sandstone. 展开更多
关键词 Weakly cemented sandstone Renormalization group method damage and failure THRESHOLD
下载PDF
Mechanical and damage evolution properties of sandstone under triaxial compression 被引量:14
4
作者 Zong Yijiang Han Lijun +1 位作者 Wei Jianjun Wen Shengyong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期601-607,共7页
To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and charac... To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and characteristics of sandstone samples under different stress states. The experimental results reveal that peak strength, residual strength, elasticity modulus and deformation modulus increase linearly with confining pressure, and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure. Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples, while macroscopic failure forms under uniaxial compression were shear failure, the shear failure angle of which decreased linearly with confin- ing pressure. There were significant volume dilatation properties in the loading process of sandstone under different confining pressures, and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage, and established damage constitutive model, realizing the real-time Quantitative evaluation of samnles damage state in loading process. 展开更多
关键词 Rock mechanics Mechanical properties Dilatation damage evolution failure characteristics
下载PDF
Dynamic failure mode and energy-based identification method for a counter-bedding rock slope with weak intercalated layers 被引量:8
5
作者 FAN Gang ZHANG Jian-jing +1 位作者 FU Xiao ZHOU Li-rong 《Journal of Mountain Science》 SCIE CSCD 2016年第12期2111-2123,共13页
The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Tran... The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers. 展开更多
关键词 Marginal spectrum Dynamic damage Counter-bedding slope failure mode Shaking table test
下载PDF
Degradation mechanism of rock under impact loadings by integrated investigation on crack and damage development 被引量:3
6
作者 周子龙 江益辉 +1 位作者 邹洋 翁磊 《Journal of Central South University》 SCIE EI CAS 2014年第12期4646-4652,共7页
Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure m... Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure mechanism still remains unclear. In this work, based on laboratory tests, numerical simulations with the particle flow code(PFC) were carried out to reproduce the micro-fracturing process of granite specimens. Shear and tensile cracks were both recorded to investigate the failure mode of rocks under different loading conditions. At the same time, a dynamic damage model based on the Weibull distribution was established to predict the deformation and degradation behavior of specimens. It is found that micro-cracks play important roles in controlling the dynamic deformation and failure process of rock under impact loadings. The sharp increase in the number of cracks may be the reason for the strength increase of rock under high strain rates. Tensile cracks tend to be the key reason for splitting failure of specimens. Numerical simulation of crack propagation by PFC can give vivid description of the failure process. However, it is not enough for evaluation of material degradation. The dynamic damage model is able to predict the stress-strain relationship of specimens reasonably well, and can be used to explain the degradation of specimens under impact loadings at macro-scale. Crack and damage can describe material degradation at different scales and can be used together to reveal the failure mechanism of rocks. 展开更多
关键词 impact loading dynamic failure particle flow code crack damage
下载PDF
Analysis of nonlinear vibration for symmetric angle-ply laminated viscoelastic plates with damage 被引量:2
7
作者 Yufang Zheng Yiming Fu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期459-466,共8页
The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy ... The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy equivalence principle and Boltzmann superposition principle, a set of governing equations of nonlinear integro-differential type are derived. By applying the finite difference method, Newmark method and iterative procedure, the governing equations are solved. The effects of loading amplitudes, exciting frequencies and different ply orientations on the critical time to failure initiation and nonlinear vibration amplitudes of the structures are discussed. Numerical results are presented for the different parameters and compared with the available data. 展开更多
关键词 Viscoelasticity . damage evolution. Laminated plates . Structure's failure initiation
下载PDF
NEW FATIGUE CUMULATIVE DAMAGE PROBABILISTIC MODEL OFTHE MECHANICAL PARTS 被引量:1
8
作者 Le Xiaobin(NanJing University of Aeronautics & Astronautics)Hu Zhongwu Fan Zuyao (Shanghai Jiaotong University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第3期183-187,共17页
Fatigue failure of mechanical part is treated as a random event.the fatigue reliablility problem can be solved through researching the random event.A new definition δb that measures fatigue damage quantity in a cycle... Fatigue failure of mechanical part is treated as a random event.the fatigue reliablility problem can be solved through researching the random event.A new definition δb that measures fatigue damage quantity in a cycle under cyclic stress is put forward. According to δ.the paper presents two new definitions K and D is fatigue damage strength.D is overall fatigue damage quantity.Using K and D to describe the fatigue failure of the parts,the paper puts forward a new fatigue cumulative damage probabilistic model of the mechanical parts.The model can be used to solve reliability fatigue problem. 展开更多
关键词 Fatigue damage Fatigue failure Raliability Fatigue cumulative damageprobabilistic model
全文增补中
Comparative Study of Energy Absorption Capability of Flat Plate Coupons Made by CFRP Plain Weave Fabric Composites
9
作者 Redouane Lombarkia Augustin Gakwaya +6 位作者 Denis Nandlall Marie-Laure Dano Julie Lé vesque Ameur BenKhelifa Philippe Vachon-Joannette Philippe Gagnon 《World Journal of Mechanics》 2021年第7期121-145,共25页
Despite years of governmental and academic institutions’ researches, no experimental standards are established for evaluating crush Specific Energy Absorption SEA for plain weave fabric woven carbon-fiber-reinforced ... Despite years of governmental and academic institutions’ researches, no experimental standards are established for evaluating crush Specific Energy Absorption SEA for plain weave fabric woven carbon-fiber-reinforced composites used in modern aircraft structures as elements of the boxes to mitigate damage during crush events. At the laboratory scale, this paper proposes a comparative study of energy absorption capability of flat plate coupons made by CFRP plain weave fabric composites. A new fixture design and setup were created with hydraulic pressure and drop tower machines to carry out tests of flat plate composite specimens under quasi-static and low velocity on-axis crash loading. For investigating parameters sensibility of triggers and layups, numerical and experimental results of four trigger types and three stacking sequences were compared. A confrontation between experimental and pre-developed UL-Crush numerical material model results confirms that coupons with 0˚ oriented central plies and saw teeth or corrugated triggers dissipates higher energy during crush, compared to coupons with 90˚ or 45˚ oriented central plies and chamfer 45˚ or steeple triggers. An efficient and simplified experimental methodology was developed to measure and investigate different parameters influencing SEA of composites under crush load. Comparison between experimental and UL-Crush material model confirms the performance of such simulation tool. 展开更多
关键词 Crush Behavior TRIGGERS damage and failure Mechanisms CRASHWORTHINESS SEA
下载PDF
Safety evaluation of Dagangshan arch dam resisting strong earthquakes with a rate-dependency anisotropic damage model 被引量:6
10
作者 DU RongQiang ZHANG Qing +1 位作者 CHEN ShiHai LIN Gao 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第3期531-540,共10页
This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of ten... This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of tension and compression, and it is used in the compiled finite element code. The material parameters used in the model can be identified from uniaxial static and dynamic experiments. Thereafter, it is used for analyzing damage and failure patterns of the dam subjected to water pressure and strong earthquakes. The numerical results show that it is necessary to consider both asymmetry between tension and compression and anisotropy of damage. Severe damage regions of the dam reveal brittle and risky positions clearly. Meanwhile damage patterns show the failure trend and safety behaviors of the dam. These results match well with that of the experiments carried out in DUT. The proposed model may be used to predict the damage patterns and potential failure modes of concrete structures like the dam. And the aseismic performance of the dam can be figured out. 展开更多
关键词 CONCRETE Dagangshan arch dam anisotropic damage failure criteria strain rate-dependency EARTHQUAKE unilateral effect
原文传递
Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements 被引量:2
11
作者 Wei Cao Amirhossein Norouzi Y.Richard Kim 《Journal of Traffic and Transportation Engineering(English Edition)》 2016年第2期104-115,共12页
For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical dist... For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD) finite element software package. In this framework, asphalt concrete was treated in the context of linear visco- elastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15 year finite element structural simulation results for all the test sections indicate that fa- tigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be emoloved for perpetual pavement design. 展开更多
关键词 Perpetual pavement Fatigue cracking Continuum damage theory failure criterion LVECD
原文传递
Further numerical investigation on concrete dynamic behaviors with considering stress non-equilibrium in SHPB test based on the waveform features 被引量:1
12
作者 T.H.Lv X.W.Chen +1 位作者 Y.J.Deng G.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第4期873-886,共14页
In this study,with the meso-scale model reliably validated in our previous work(Construction and Building Materials,2018),the waveform features of plain concrete under various loading conditions and especially with co... In this study,with the meso-scale model reliably validated in our previous work(Construction and Building Materials,2018),the waveform features of plain concrete under various loading conditions and especially with considering stress non-equilibrium are reliably reproduced and predicted.Associating with waveform features,the violation indicator of the specimen stress equilibrium in the split Hopkinson pressure bar test is identified for concrete-like damage softening materi-als.The concrete material behaviors for stress non-equilibrium are further analyzed,e.g.the dynamic increase factor(DIF)and damage development,etc.The conception of“damage failure volume”is introduced,and a new method of defining the development of concrete dynamic damage is given in the nimierical study.What’s more,the“compression wave”and“double peak”phenomena observed in the experiment are further interpreted based on the means of numerical simulation.Waveform features how to reflect the concrete material properties is also concluded.The results show that,the disappearance of the“double peak” phenomenon of reflection curve under high strain rate can be regarded as the indicator of the violation of stress equilibrium.After the violation of the stress equilibrium,the relevant DIFs of the concrete specimen will not change significantly.Especially,the concrete specimen will turn into structural response from material response.The conception of“damage failure volume”can well explain the generation of the“double peak”phenomenon of the reflection curve.The “compression wave” phenomenon of reflection curve under lower strain rates is derived from the unloading expansion recovery of the concrete specimen.Furthermore,under the same loading condition,the amplitude of the first peak of the reflection curve can be used as the evaluation standard of the bonding quality between mortar and aggregates. 展开更多
关键词 Concrete material Split Hopkinson pressure bar test Numerical investigation Waveform feature Stress non-equilibrium damage failure volume
原文传递
Comparison of Acoustic Emission Characteristics for C/SiC Composite Component Under Combination of Heating and Mechanical Loading
13
作者 Zhi-Yong Tan Chang-Wan Min +2 位作者 Hong-Wei Wu Yu-Hai Qian Mei-Shuan Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第10期992-998,共7页
The acoustic emission(AE) characteristics of C/SiC composite component under various conditions were compared, with the purpose of identifying the possible damage and failure mechanism. During the process of the sin... The acoustic emission(AE) characteristics of C/SiC composite component under various conditions were compared, with the purpose of identifying the possible damage and failure mechanism. During the process of the single mechanical loading, the highest amplitude of the AE signal was less than 85 dB and the main damage forms of matrix cracking and interface debonding were involved. For the heating process, high-energy AE signals with an amplitude more than 85 dB were detected and fiber fracture mechanism was determined as well due to the thermal stress caused by the mismatch of the thermal expansion coefficient between the reinforced fiber and matrix. During the combination process of the heating and mechanical loading, it was concluded that the degree of damage was much severer than the simple superposition of damage produced by the individual mechanical loading and the individual heating process. 展开更多
关键词 C/SiC composite damage and failure HEATING Mechanical loading Acoustic emission
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部