期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Response models of weakly consolidated soft rock roadway under different interior pressures considering dilatancy effect 被引量:6
1
作者 赵增辉 王渭明 王磊 《Journal of Central South University》 SCIE EI CAS 2013年第12期3736-3744,共9页
Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stre... Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway. 展开更多
关键词 weakly consolidated soft rock roadway dilatancy effect modulus damage coefficient cave interior pressure responsemodel
下载PDF
Simulation of Fatigue Stiffness Degradation in Prestressed Concrete Beams under Cyclic Loading
2
作者 Junqing Lei Shanshan Cao +1 位作者 Guoshan Xu Yun Xiao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第1期67-74,共8页
In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete bea... In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions. 展开更多
关键词 prestressed concrete beam FATIGUE stiffness degradation simulation damaged concrete elastic modulus steel effective residual area deflection prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部