The damaged and strain subsurface layers of semi insulating(SI) GaAs substrate were characterized non destructively by Raman back scattering.The study shows that the thicknesses of the damaged and strain layers are...The damaged and strain subsurface layers of semi insulating(SI) GaAs substrate were characterized non destructively by Raman back scattering.The study shows that the thicknesses of the damaged and strain layers are less than 3μm.The damaged and strain layer can be removed after being etched in H 2SO 4·H 2O 2·H 2O for 1.5 min.展开更多
The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severiti...The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severities, requiring only the information about the changes of a few lower natural frequencies. First, a damage quantification method is formulated and iterative approach is adopted for determining the damage extent. Then a damage localization algorithm is proposed, in which a damage indicator is formulated where unity value corresponds to the true damage scenario. Finally, numerical studies and model tests are conducted to demonstrate the effectiveness of the developed algorithm.展开更多
By introducing a fatigue blunting factor, the cyclic elasto-plastic Hutchinson-Rice-Rosengren (HRR) field near the crack tip under the cyclic loading is modified. And, an average damage per loading-cycle in the cycl...By introducing a fatigue blunting factor, the cyclic elasto-plastic Hutchinson-Rice-Rosengren (HRR) field near the crack tip under the cyclic loading is modified. And, an average damage per loading-cycle in the cyclic plastic deformation region is defined due to Manson-Coffin law. Then, according to the linear damage accumulation theory-Miner law, a new model for predicting the fatigue crack growth (FCG) of the opening mode crack based on the low cycle fatigue (LCF) damage is set up. The step length of crack propagation is assumed to be the size of cyclic plastic zone. It is clear that every parameter of the new model has clearly physical meaning which does not need any human debugging. Based on the LCF test data, the FCG predictions given by the new model are consistent with the FCG test results of Cr2Ni2MoV and X12CrMoWVNbN 10-1-1. What's more, referring to the relative researches, the good predictability of the new model is also proved on six kinds of materials.展开更多
A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strai...A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strain energy(EMSE)damage index,this paper proposes a novel damage identification method for girder bridge structures.The effectiveness of the proposed damage identification method is investigated using experiments on four simply supported steel beams.With Xiabaishi Bridge,a prestressed continuous rigid frame bridge with large span,as the engineering background,the proposed damage identification method is validated by using numerical simulation to generate different bearing damage scenarios.Finally,the efficiency of the method is justified by considering its application to identifying cracking damage for a real continuous beam bridge called Xinyihe Bridge.It is concluded that the EMSE damage index is sensitive to the cracking damage and the bearing damage.The locations and levels of multiple cracking damages and bearing damages can be also identified.The results illuminate a great potential of the proposed method in identifying damages of real bridge structures.展开更多
This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven(2D) C/Si C composite under in-plane on- and offaxis loading conditions. Specimens wit...This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven(2D) C/Si C composite under in-plane on- and offaxis loading conditions. Specimens with 15, 30, and 45 off-axis angles were prepared and tested under monotonic and incremental cyclic tension and compression loads. The obtained results were compared with those of uniaxial tension, compression, and shear specimens. The relationships between the damage modes and the stress state were analyzed based on scanning electronic microscopy(SEM) observations and acoustic emission(AE) data. The test results reveal the remarkable axial anisotropy and unilateral behavior of the material. The off-axis tension test results show that the material is fiber-dominant and the evolution rate of damage and inelastic strain is accelerated under the corresponding combined biaxial tension and shear loads. Due to the damage impediment effect of compression stress, compression specimens show higher mechanical properties and lower damage evolution rates than tension specimens with the same off-axis angle. Under cyclic tension–compression loadings, both on-axis and off-axis specimens exhibit progressive damage deactivation behaviors in the compression range, but with different deactivation rates.展开更多
文摘The damaged and strain subsurface layers of semi insulating(SI) GaAs substrate were characterized non destructively by Raman back scattering.The study shows that the thicknesses of the damaged and strain layers are less than 3μm.The damaged and strain layer can be removed after being etched in H 2SO 4·H 2O 2·H 2O for 1.5 min.
基金supported by the National Natural Science Foundation of China (50909088, 51010009)Science & Technology Development Project of Qingdao (09-1-3-18-jch)Program for New Century Excellent Talents in University (NCET-10-0762)
文摘The present paper develops a new method for damage localization and severity estimation based on the employment of modal strain energy. This method is able to determine the damage locations and estimate their severities, requiring only the information about the changes of a few lower natural frequencies. First, a damage quantification method is formulated and iterative approach is adopted for determining the damage extent. Then a damage localization algorithm is proposed, in which a damage indicator is formulated where unity value corresponds to the true damage scenario. Finally, numerical studies and model tests are conducted to demonstrate the effectiveness of the developed algorithm.
基金co-supported by National Natural Science Foundation of China (No. 11072205)College Students' National Innovation Foundation of China (No. 101061323)
文摘By introducing a fatigue blunting factor, the cyclic elasto-plastic Hutchinson-Rice-Rosengren (HRR) field near the crack tip under the cyclic loading is modified. And, an average damage per loading-cycle in the cyclic plastic deformation region is defined due to Manson-Coffin law. Then, according to the linear damage accumulation theory-Miner law, a new model for predicting the fatigue crack growth (FCG) of the opening mode crack based on the low cycle fatigue (LCF) damage is set up. The step length of crack propagation is assumed to be the size of cyclic plastic zone. It is clear that every parameter of the new model has clearly physical meaning which does not need any human debugging. Based on the LCF test data, the FCG predictions given by the new model are consistent with the FCG test results of Cr2Ni2MoV and X12CrMoWVNbN 10-1-1. What's more, referring to the relative researches, the good predictability of the new model is also proved on six kinds of materials.
基金The National Natural Science Foundation of China(Grant Nos.51178101 and 51378112)The University Graduate Student Scientific Research Innovation Plan of Jiangsu Province(Grant No.CXZZ13_0109)China Scholarship Council under Program for Graduate Student Overseas Study Scholarship
文摘A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strain energy(EMSE)damage index,this paper proposes a novel damage identification method for girder bridge structures.The effectiveness of the proposed damage identification method is investigated using experiments on four simply supported steel beams.With Xiabaishi Bridge,a prestressed continuous rigid frame bridge with large span,as the engineering background,the proposed damage identification method is validated by using numerical simulation to generate different bearing damage scenarios.Finally,the efficiency of the method is justified by considering its application to identifying cracking damage for a real continuous beam bridge called Xinyihe Bridge.It is concluded that the EMSE damage index is sensitive to the cracking damage and the bearing damage.The locations and levels of multiple cracking damages and bearing damages can be also identified.The results illuminate a great potential of the proposed method in identifying damages of real bridge structures.
基金the National Key Laboratory of Thermostructure Composite Materials for providing the specimens and the financial support from the Basic Research Foundation of Northwestern Polytechnical University of China (No. JC20110219)
文摘This paper reports an experimental investigation on the macroscopic mechanical behaviors and damage mechanisms of the plain-woven(2D) C/Si C composite under in-plane on- and offaxis loading conditions. Specimens with 15, 30, and 45 off-axis angles were prepared and tested under monotonic and incremental cyclic tension and compression loads. The obtained results were compared with those of uniaxial tension, compression, and shear specimens. The relationships between the damage modes and the stress state were analyzed based on scanning electronic microscopy(SEM) observations and acoustic emission(AE) data. The test results reveal the remarkable axial anisotropy and unilateral behavior of the material. The off-axis tension test results show that the material is fiber-dominant and the evolution rate of damage and inelastic strain is accelerated under the corresponding combined biaxial tension and shear loads. Due to the damage impediment effect of compression stress, compression specimens show higher mechanical properties and lower damage evolution rates than tension specimens with the same off-axis angle. Under cyclic tension–compression loadings, both on-axis and off-axis specimens exhibit progressive damage deactivation behaviors in the compression range, but with different deactivation rates.