期刊文献+
共找到1,622篇文章
< 1 2 82 >
每页显示 20 50 100
Low-velocity Impact Damage Analysis of Composite Laminates Using Self-adapting Delamination Element Method 被引量:1
1
作者 王立朋 燕瑛 +1 位作者 吴大方 吴浩 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期313-319,共7页
On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method... On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data. 展开更多
关键词 self-adapting delamination element method low-velocity impact DELAMINATION composite laminate
下载PDF
Nonlinear progressive damage model for composite laminates used for low-velocity impact 被引量:11
2
作者 郭卫 薛璞 杨军 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1145-1154,共10页
In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impac... In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results. 展开更多
关键词 composite laminate progressive damage DELAMINATION energy release rate low-velocity impact
下载PDF
Damage Initiation and Propagation in Composites Subjected to Low-Velocity Impact:Experimental Results,3D Dynamic Damage Model,and FEM Simulations 被引量:3
3
作者 JIA Wenbin WEN Weidong FANG Lei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第3期488-499,共12页
A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens... A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process. 展开更多
关键词 COMPOSITES impact three-dimensional DYNAMIC damage model impact damage INITIATION and PROPAGATION
下载PDF
ON RESIDUAL COMPRESSIVE STRENGTH PREDICTION OF COMPOSITE SANDWICH PANELS AFTER LOW-VELOCITY IMPACT DAMAGE 被引量:3
4
作者 Xie Zonghong Anthony J. Vizzini Tang Qingru 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第1期9-17,共9页
This paper introduces a nonlinear finite element analysis on damage propagation behavior of composite sandwich panels under in-plane uniaxial quasi-static compression after a low velocity impact. The major damage mode... This paper introduces a nonlinear finite element analysis on damage propagation behavior of composite sandwich panels under in-plane uniaxial quasi-static compression after a low velocity impact. The major damage modes due to the impact, including the residual indentation on the impacted facesheet, the initially crushed core under the impacted area, and the delamination are incorporated into the model. A consequential core crushing mechanism is incorporated into the analysis by using an element deactivation technique. Damage propagation behavior, which corresponds to those observed in sandwich compression after impact (SCAI) tests, has been successfully captured in the numerical simulation. The critical far field stress corresponding to the onset of damage propagation at specified critical locations near the damage zone are captured successfully. They show a good correlation with experimental data. These values can be used to effectively predict the residual compressive strength of low-velocity impact damaged composite sandwich panels. 展开更多
关键词 sandwich structures impact DELAMINATION damage growth honeycomb core finite element method
下载PDF
Influence of Low-velocity Impact on Damage Behavior of Carbon Fiber-reinforced Composites 被引量:3
5
作者 ZHANG Xiaoyu ZHOU Ruoyu +2 位作者 CHEN Jianzhong LV Yong CAO Dongfeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期482-487,共6页
A combination of experimental measurements and numerical analysis was utilized to study the low-velocity impact damage of domestic carbon fiber-reinforced composites(CFRCs).The results indicated that the low-velocity ... A combination of experimental measurements and numerical analysis was utilized to study the low-velocity impact damage of domestic carbon fiber-reinforced composites(CFRCs).The results indicated that the low-velocity impact damage induced pits and longitudinal cracks on the front side,oblique cracks and delaminationin on the back side.The pit depth increased with the increasing impact energy.It was demonstrated that the numerical analysis strain history curve was similar to the experimentally measured strain history curve,which verified the accuracy of numerical analysis in which the Hashin failure criterion was used.The work provides basic data and theoretical basis for the promotion and application of the domestic carbon fiber,and demonstrates the feasibility of replacing imported carbon fibers with domestic carbon fibers. 展开更多
关键词 domestic carbon fiber-reinforced composites low-velocity impact Hashin failure criterion damage mode strain history curve
下载PDF
Punching and Local Damages of Fiber and FRP Reinforced Concrete under Low-Velocity Impact Load
6
作者 Kyung-Hwan Min 《Open Journal of Civil Engineering》 2018年第1期64-81,共18页
In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it i... In recent years, the development and application of high performance fiber reinforced concrete or cementitious composites are increasing due to their high ductility and energy absorption characteristics. However, it is difficult to obtain the required properties of the FRCC by simply adding fiber to the concrete matrix. Many researchers are paying attention to fiber reinforced polymers (FRP) for the reinforcement of construction structures because of their significant advantages over high strain rates. However, the actual FRP products are skill-dependent, and the quality may not be uniform. Therefore, in this study, two-way punching tests were carried out to evaluate the performances of FRP strengthened and steel and polyvinyl alcohol (PVA) fiber reinforced concrete specimens for impact and static loads. The FRP reinforced normal concrete (NC), steel fiber reinforced concrete (SFRC), and PVA FRCC specimens showed twice the amount of enhanced dissipated energy (total energy) under impact loadings than the non-retrofitted specimens. In the low-velocity impact test of the two-way NC specimens strengthened by FRPs, the total dissipated energy increased by 4 to 5 times greater than the plain NC series. For the two-way specimens, the total energy increased by 217% between the non-retrofitted SFRC and NC specimens. The total dissipated energy of the CFRP retrofitted SFRC was twice greater than that of the plain SFRC series. The PVA FRCC specimens showed 4 times greater dissipated energy than for the energy of the plain NC specimens. For the penetration of two-way specimens with fibers, the Hughes formula considering the tensile strength of concrete was a better predictor than other empirical formulae. 展开更多
关键词 FIBER REINFORCED Concrete Steel FIBER Polyvinyl ALCOHOL (PVA) FIBER FIBER REINFORCED Polymer (FRP) low-velocity impact Load PUNCHING Penetration Depth
下载PDF
Enhanced structural damage behavior of liquid-filled tank by reactive material projectile impact 被引量:1
7
作者 Jianwen Xie Yuanfeng Zheng +4 位作者 Zhenyang Liu Chengzhe Liu Aoxin Liu Pengwan Chen Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期211-229,共19页
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s... A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior. 展开更多
关键词 Reactive material projectile Hydrodynamic ram Enhanced structural damage Liquid-filled tank impact
下载PDF
Dynamic Multi-Physics Behaviors and Performance Loss of Cylindrical Batteries Upon Low-Velocity Impact Loading
8
作者 Qingdan Huang Yang Bai +2 位作者 Han Luo Yikai Jia Chao Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期184-192,共9页
In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and... In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and explosion incidents.Consequently,it is imperative to investigate the safety performance of LIBs under mechanical loads.This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact.We systematically and experimentally uncovered the mechanical,electrochemical,and thermal responses,damage behavior,and corresponding mechanisms under various conditions.Our study demonstrates that higher impact energy results in increased structural stiffness,maximum temperature,and maximum voltage drop.Furthermore,heightened impact energy significantly influences the electrical resistance parameters within the internal resistance.We also examined the effects of State of Charge(SOC)and C-rates.The methodology and experimental findings will offer insights for enhancing the safety design,conducting risk assessments,and enabling the cascading utilization of energy storage systems based on LIBs. 展开更多
关键词 cycling performance damaged battery lithium-ion battery low-velocity impact mechanical safety
下载PDF
Study on damage mechanism and damage distribution of the rear plate under impact of debris cloud
9
作者 Chenyang Wu Xiaowei Chen Qiguang He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期151-167,共17页
The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of prot... The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate. 展开更多
关键词 damage of rear plate Debris cloud Secondary impact Hypervelocity yaw impact FE-SPH adaptive method
下载PDF
Experimental and numerical study of hypervelocity impact damage on composite overwrapped pressure vessels
10
作者 Yong-Pan Duan Run-Qiang Chi +1 位作者 Bao-Jun Pang Yuan Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期58-72,共15页
Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in ... Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs. 展开更多
关键词 Orbital debris Hypervelocity impact Composite overwrapped pressure vessels damage mechanisms
下载PDF
Dynamic and electrical responses of a curved sandwich beam with glass reinforced laminate layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact
11
作者 N.SHAHVEISI S.FELI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期155-178,共24页
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate... The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed. 展开更多
关键词 analytical model piezoelectric layer curved sandwich beam glass reinforced laminate(GRL) pliable core low-velocity impact(LVI) classical non-adhesive elastic contact theory
下载PDF
Influence of railway wheel tread damage on wheel-rail impact loads and the durability of wheelsets
12
作者 Michele Maglio Tore Vernersson +2 位作者 Jens C.O.Nielsen Anders Ekberg Elena Kabo 《Railway Engineering Science》 EI 2024年第1期20-35,共16页
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the... Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage. 展开更多
关键词 Wheel tread damage Rolling contact fatigue cluster Field measurements Dynamic vehicle-track interaction Wheel-rail impact load Wheelset durability
下载PDF
DAMAGE PROGRESSIVE MODEL OF COMPRESSION OFCOMPOSITE LAMINATES AFTER LOW VELOCITY IMPACT 被引量:4
13
作者 程小全 郦正能 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第5期618-626,共9页
Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investi... Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investigate compressive properties of composite laminates after low velocity impact, three dimensional dynamic finite element method (FEM) was used to simulate low-velocity impact damage of 2 kinds of composite laminates firstly. Damage distributions and projective damage areas of the laminates were predicted under two impact energy levels. The analyzed damage after impact was considered to be the initial damage of the laminates under compressive loads. Then three dimensional static FEM was used to simulate the compressive failure process and to calculate residual compressive strengths of the impact damaged laminates. It is achieved to simulate the whole process from initial low-velocity impact damage to final compressive failure of composite laminates. Compared with experimental results, it shows that the numerical predicting results agree with the test results fairly well. 展开更多
关键词 COMPOSITE LAMINATE impact damage compression
下载PDF
Peridynamic modelling of impact damage in three-point bending beam with offset notch 被引量:4
14
作者 Ning LIU Dahsin LIU Wu ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第1期99-110,共12页
The nonlocal peridynamic theory has been proven to be a promising method for the material failure and damage analyses in solid mechanics. Based upon the integro- differential equations, peridynamics enables predicting... The nonlocal peridynamic theory has been proven to be a promising method for the material failure and damage analyses in solid mechanics. Based upon the integro- differential equations, peridynamics enables predicting the complex fracture phenomena such as spontaneous crack nucleation and crack branching, curving, and arrest. In this paper, the bond-based peridynamic approach is used to study the impact damage in a beam with an offset notch, which is widely used to investigate the mixed I-II crack propagation in brittle materials. The predictions from the peridynamic analysis agree well with available experimental observations. The numerical results show that the dynamic fracture behaviors of the beam under the impact load, such as crack initiation, curving, and branching, rely on the location of the offset notch and the impact speed of the drop hammer. 展开更多
关键词 PERIDYNAMICS impact damage crack propagation fracture mode
下载PDF
Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper 被引量:4
15
作者 张凤国 周洪强 +4 位作者 胡军 邵建立 张广财 洪滔 何斌 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期378-384,共7页
A statistical model of dynamic spall damage due to void nucleation and growth is proposed for ductile materials under intense loading, which takes into account inertia, the elastic-plastic effect, and initial void siz... A statistical model of dynamic spall damage due to void nucleation and growth is proposed for ductile materials under intense loading, which takes into account inertia, the elastic-plastic effect, and initial void size. To some extent, void interaction could be accounted for in this approach. Based on this model, the simulation of spall experiments for copper is performed by using the Lagrangian finite element method. The simulation results are in good agreement with experimental data for the free surface velocity profile, stress record behind copper target, final porosity, and void concentrations across the target. The influence of elastic-plastic effect upon the damage evolution is explored. The correlation between the damage evolution and the history of the stress near the spall plane is also analyzed. 展开更多
关键词 spall damage ductile materials free surface velocity plate impact
下载PDF
Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact 被引量:12
16
作者 Hai-fu Wang Jian-wen Xie +2 位作者 Chao Ge Huan-guo Guo Yuan-feng Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期599-608,共10页
Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel t... Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel tank is a rectangular structure,welded by six pieces of 2024 aluminum plate with a thickness of 6 mm,and filled with RP-3 aviation kerosene.Experimental results show that the kerosene is ignited by the RMP impact at a velocity above 1062 m/s,and a novel interior ignition phenomenon which is closely related to the rupture effect of the fuel tank is observed.However,the traditional steel projectile with the same mass and dimension requires a velocity up to 1649 m/s to ignite the kerosene.Based on the experimental results,the radial pressure field is considered to be the main reason for the shear failure of weld.For mechanism considerations,the chemical energy released by the RMP enhances the hydrodynamic ram(HRAM)effect and provides additional ignition sources inside the fuel tank,thereby enhancing both rupture and ignition effects.Moreover,to further understand the enhanced ignition effect of RMP,the reactive debris temperature inside the kerosene is analyzed theoretically.The initiated reactive debris with high temperature provides effective interior ignition sources to ignite the kerosene,resulting in the enhanced ignition of the kerosene. 展开更多
关键词 Reactive material projectile Fuel tank Enhanced damage effect Enhanced ignition mechanism impact behavior
下载PDF
Damage of multi-layer spaced metallic target plates impacted by radial layered PELE 被引量:5
17
作者 Chun Cheng Zhong-hua Du +4 位作者 Xi Chen Li-zhi Xu Cheng-xin Du Ji-long Han Xiao-dong Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期201-207,共7页
Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by... Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates. 展开更多
关键词 PELE(the PENETRATOR with lateral efficiency) MULTI-LAYER spaced metal TARGET PLATES impact damage
下载PDF
Ultrasonic Evaluation of the Impact Damage of Polymer Bonded Explosives 被引量:3
18
作者 陈鹏万 戴开达 +1 位作者 黄风雷 丁雁生 《Journal of Beijing Institute of Technology》 EI CAS 2004年第3期242-246,共5页
The damage properties of polymer bonded explosives under dynamic loading were studied by using ultrasonic evaluation. Explosive samples were damaged by a low-velocity gas gun at different impact velocities. Ultrasonic... The damage properties of polymer bonded explosives under dynamic loading were studied by using ultrasonic evaluation. Explosive samples were damaged by a low-velocity gas gun at different impact velocities. Ultrasonic examination was carried out with a pulse through-transmission method. Spectra analyses were carried out by using fast Fourier transform. Characteristic ultrasonic parameters, including ultrasonic velocities, attenuation coefficients, spectra area and master frequency, were obtained. The correlation between the impact damage and ultrasonic parameters was analyzed. A damage coefficient D was defined by considering a combination of ultrasonic velocity and amplitude. The results show that ultrasonic parameters can be used to quantitatively assess the damage extent in impacted plastic bonded explosives.. 展开更多
关键词 polymer bonded explosives impact damage ultrasonic evaluation
下载PDF
Detecting Impact Damage in Carbon Fabric/epoxy-matrix Composites by Ultrasonic F-scan and Electrical Resistance Measurement 被引量:3
19
作者 谢小林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期214-217,共4页
The status and the variation of electrical resistance of impacted carbon fiber/epoxy-matrix composites were studied by ultrasonic F-scan and electrical resistance measurement The experimental results shows that impact... The status and the variation of electrical resistance of impacted carbon fiber/epoxy-matrix composites were studied by ultrasonic F-scan and electrical resistance measurement The experimental results shows that impact damage energy threshold value of carbon fabric/epoxy-matrix composites can determine by using ultrasonic F-scan. When the impact energy exceeds the threshold value, damage is generated in composites. Electrical resistance of impacted composites is changed owing to the contact of each carbon fiber unit in composites, which cause a change of the series-parallel in conductors. The veracity of detecting impact damage in composites can be improved in this case. 展开更多
关键词 carbon fabric/epoxy-matrix composites impact damage ultrasonic F-scan electrical resistance measurement
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
20
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 damage constitutive model Parameter calibration Rock modeling SANDSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部