期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Assessment of Structural Damage Condition Based on Fuzzy Pattern Recognition
1
作者 WU Zi-yan ZHANG Yu 《International Journal of Plant Engineering and Management》 2008年第1期10-19,共10页
This paper presents a new method of damage condition assessment that allows accommodating other types of uncertainties due to ambiguity, vagueness, and fuzziness that are statistically nondescribable. In this method, ... This paper presents a new method of damage condition assessment that allows accommodating other types of uncertainties due to ambiguity, vagueness, and fuzziness that are statistically nondescribable. In this method, healthy observations are used to construct a fury set representing sound performance characteristics. Additionally, the bounds on the similarities among the structural damage states are prescribed by using the state similarity matrix. Thus, an optimal group fuzzy sets representing damage states such as little, moderate, and severe damage can be inferred as an inverse problem from healthy observations only. The optimal group of damage fuzzy sets is used to classify a set of observations at any unknown state of damage using the principles of fitzzy pattern recognition based on an approximate principle . This method can be embedded into the system of Structural Health Monitoring (SHM) to give advice about structural maintenance and life predictio comes from Reference [ 9 ] for damage pattern recognition is presented n. Finally, a case and discussed. The study, which compared result illustrates our method is more effective and general, so it is very practical in engineering. 展开更多
关键词 damage condition assessment fuzzy pattern recognition state similarity matrix approximate principle structural health monitoring
下载PDF
Multiaxial fatigue life prediction of composite materials 被引量:5
2
作者 Jingmeng WENG Weidong WEN Hongjian ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1012-1020,共9页
In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Ass... In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms. 展开更多
关键词 Fatigue damage parameter Finite element analysis Life prediction Multiaxial fatigue Periodical boundary condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部