As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes...As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes tremendous difficulties to post-earthquake emergency response and recovery activities.This paper proposes a methodology to locate seismic damage to a water distribution system by monitoring water head online at some nodes in the water distribution system.An artificial neural network-based inverse analysis method is developed to estimate the water head variations at all nodes that are not monitored based on the water head variations at the nodes that are monitored.The methodology provides a quick,effective,and practical way to locate seismic damage to a water distribution system.展开更多
The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were per...The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were performed using a finite element method (FEM) to obtain virtual experiment data. In the present research, the size of the side damage from a collision phenomenon were measured and used to verify the numerical configuration together with the calculation results using an empirical equation. Parameters in the external dynamics of a ship collision such as the location of the contact point and velocity of the striking ship were taken into consideration. The internal energy and deformation size on the side structure were discussed further in a comparative study. The effects of the selected parameters on several structural behaviors, namely energy, force, and damage extent were also observed and evaluated in this section. Stiffener on side hull was found to contribute significantly into resistance capability of the target ship against penetration of the striking bow. Remarkable force during penetration was observed to occur when inner shell was crushed as certain velocity was applied in the striking bow.展开更多
The principal of preferred plane analysis is a new research view and model of rock slope engineering geology. It advocates that the rock slope stability, boundary conditions and failure model are controlled by preferr...The principal of preferred plane analysis is a new research view and model of rock slope engineering geology. It advocates that the rock slope stability, boundary conditions and failure model are controlled by preferred planes. Therefore, the problem of slope stability evaluation can be converted into the search for preferred planes and determination of preferred separating bodies. The organic combination of the deterministic model and the indeterministic model can be realized by applying the systems engineering principle and the research model and method of reliability analysis in the quantitative evaluation and prediction of rock slope stability. Finally, the paper presents the case studies of slopes of the Yangtze Gorge Project and the Ma'anshan openpit mine.展开更多
基金National Natural Science Foundation of China under Grant No.59878032
文摘As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes tremendous difficulties to post-earthquake emergency response and recovery activities.This paper proposes a methodology to locate seismic damage to a water distribution system by monitoring water head online at some nodes in the water distribution system.An artificial neural network-based inverse analysis method is developed to estimate the water head variations at all nodes that are not monitored based on the water head variations at the nodes that are monitored.The methodology provides a quick,effective,and practical way to locate seismic damage to a water distribution system.
文摘The main goal of this study was to investigate the effects of selected ship collision parameter values on the characteristics of the absorbed energy in several ship collision scenarios. Non-linear simulations were performed using a finite element method (FEM) to obtain virtual experiment data. In the present research, the size of the side damage from a collision phenomenon were measured and used to verify the numerical configuration together with the calculation results using an empirical equation. Parameters in the external dynamics of a ship collision such as the location of the contact point and velocity of the striking ship were taken into consideration. The internal energy and deformation size on the side structure were discussed further in a comparative study. The effects of the selected parameters on several structural behaviors, namely energy, force, and damage extent were also observed and evaluated in this section. Stiffener on side hull was found to contribute significantly into resistance capability of the target ship against penetration of the striking bow. Remarkable force during penetration was observed to occur when inner shell was crushed as certain velocity was applied in the striking bow.
基金Chen Zhengzhou, Yang Weidong, Wang Peiqing and Wu Hao also took part in this study
文摘The principal of preferred plane analysis is a new research view and model of rock slope engineering geology. It advocates that the rock slope stability, boundary conditions and failure model are controlled by preferred planes. Therefore, the problem of slope stability evaluation can be converted into the search for preferred planes and determination of preferred separating bodies. The organic combination of the deterministic model and the indeterministic model can be realized by applying the systems engineering principle and the research model and method of reliability analysis in the quantitative evaluation and prediction of rock slope stability. Finally, the paper presents the case studies of slopes of the Yangtze Gorge Project and the Ma'anshan openpit mine.