Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of ci...Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.展开更多
A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The ob...A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio αg/ao, where αg is the maximum peak ground acceleration (PGA) of the earthquake event and ao is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.展开更多
Abstract We study the damage probability when M weapons are used against a unitary target. We use the Carleton damage function to model the distribution of damage probability caused by each weapon. The deviation of th...Abstract We study the damage probability when M weapons are used against a unitary target. We use the Carleton damage function to model the distribution of damage probability caused by each weapon. The deviation of the impact point from the aimpoint is attributed to both the dependent error and independent errors. The dependent error is one random variable affecting M weapons the same way while independent errors are associated with individual weapons and are independent of each other. We consider the case where the dependent error is significant, non-negligible relative to independent errors. We first derive an explicit exact solution for the damage probability caused by M weapons for any M. Based on the exact solution, we find the optimal aimpoint distribution of M weapons to maximize the damage probability in several cases where the aimpoint distribution is constrained geometrically with a few free parameters, including uniform distributions around a circle or around an ellipse. Then, we perform unconstrained optimization to obtain the overall optimal aimpoint distribution and the overall maximum damage probability, which is carried out for different values of M, up to 20 weapons. Finally, we derive a phenomenological approximate expression for the damage probability vs. M, the number of weapons, for the parameters studied here.展开更多
The seismic behavior of skewed bridges has not been well studied compared to straight bridges. Skewed bridges have shown extensive damage, especially due to deck rotation, shear keys failure, abutment unseating and co...The seismic behavior of skewed bridges has not been well studied compared to straight bridges. Skewed bridges have shown extensive damage, especially due to deck rotation, shear keys failure, abutment unseating and column- bent drift. This research, therefore, aims to study the behavior of skewed and straight highway overpass bridges both with and without taking into account the effects of Soil-Structure Interaction (SSI) due to near-fault ground motions. Due to several sources of uncertainty associated with the ground motions, soil and structure, a probabilistic approach is needed. Thus, a probabilistic methodology similar to the one developed by the Pacific Earthquake Engineering Research Center (PEER) has been utilized to assess the probability of damage due to various levels of shaking using appropriate intensity measures with minimum dispersions. The probabilistic analyses were performed for various bridge configurations and site conditions, including sand ranging from loose to dense and clay ranging from soft to stiff, in order to evaluate the effects. The results proved a considerable susceptibility of skewed bridges to deck rotation and shear keys displacement. It was also found that SSI had a decreasing effect on the damage probability for various demands compared to the fixed-base model without including SSI. However, deck rotation for all types of the soil and also abutment unseating for very loose sand and soft clay showed an increase in damage probability compared to the fixed-base model. The damage probability for various demands has also been found to decrease with an increase of soil strength for both sandy and clayey sites. With respect to the variations in the skew angle, an increase in skew angle has had an increasing effect on the amplitude of the seismic response for various demands. Deck rotation has been very sensitive to the increase in the skew angle; therefore, as the skew angle increased, the deck rotation responded accordingly. Furthermore, abutment unseating showed an increasing trend due to an increase in skew angle for both fixed-base and SSI models.展开更多
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the...The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.展开更多
The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier sy...The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier system were depicted by a hyperbolic-hysteretic and an equivalent elastoplastic model,respectively.One hundred twenty ground motions with varying peak accelerations were considered,along with the variations in bridge superstructure mass and pile flexural rigidity.Comprehensive comparison studies suggested that peak pile-cap acceleration and peak pile-cap velocity are the optimal ground motion intensity measures for seismic responses of the pier and the pile,respectively.Furthermore,based on two optimal ground motion intensity measures and using curvature ductility to quantify different damage states,seismic fragility analyses were performed.The pier generally had no evident damage except when the bridge girder mass was equal to 960 t,which seemed to be comparatively insensitive to the varying pile flexural rigidity.In comparison,the pile was found to be more vulnerable to seismic damage and its failure probabilities tended to clearly reduce with the increment of pile flexural rigidity,while the influence of the bridge girder mass was relatively minor.展开更多
The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time sch...The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.展开更多
The appropriate terminal attitude of missile is important to improve the damage effectiveness of fragmentation warhead against aircraft targets.In this paper,three missile terminal attitude selection methods are propo...The appropriate terminal attitude of missile is important to improve the damage effectiveness of fragmentation warhead against aircraft targets.In this paper,three missile terminal attitude selection methods are proposed to solve the problem of terminal attitude selection in different situations according to their respective evaluation indexes.The MVE-based method uses the damage probability of each detonation point around the aircraft at a given attitude of missile to calculate the Mean Volume of Effectiveness(MVE)at the corresponding attitude,and then uses the MVE for different attitudes to select the terminal strike attitude.The detonation position-based method addresses the case where the missile detonation position can be assessed in advance.Given the effects of missile guidance errors and fuze activation position errors,Monte Carlo simulations are used to calculate the damage probability of aircraft with different strike attitudes,from which the terminal strike attitude is selected.The BP-ANN model-based method uses the constructed Back Propagation Artificial Neural Network(BP-ANN)model instead of simulation to calculate the evaluation indexes in the corresponding cases of MVE-based method and Detonation position-based method,which can improve the efficiency of attitude selection.Simulations are conducted for different scenarios to verify the feasibility and effectiveness of the proposed method.展开更多
It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of...It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 62073256)the Shaanxi Provincial Science and Technology Department (Grant No. 2023-YBGY-342)。
文摘Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.
文摘A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio αg/ao, where αg is the maximum peak ground acceleration (PGA) of the earthquake event and ao is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.
文摘Abstract We study the damage probability when M weapons are used against a unitary target. We use the Carleton damage function to model the distribution of damage probability caused by each weapon. The deviation of the impact point from the aimpoint is attributed to both the dependent error and independent errors. The dependent error is one random variable affecting M weapons the same way while independent errors are associated with individual weapons and are independent of each other. We consider the case where the dependent error is significant, non-negligible relative to independent errors. We first derive an explicit exact solution for the damage probability caused by M weapons for any M. Based on the exact solution, we find the optimal aimpoint distribution of M weapons to maximize the damage probability in several cases where the aimpoint distribution is constrained geometrically with a few free parameters, including uniform distributions around a circle or around an ellipse. Then, we perform unconstrained optimization to obtain the overall optimal aimpoint distribution and the overall maximum damage probability, which is carried out for different values of M, up to 20 weapons. Finally, we derive a phenomenological approximate expression for the damage probability vs. M, the number of weapons, for the parameters studied here.
文摘The seismic behavior of skewed bridges has not been well studied compared to straight bridges. Skewed bridges have shown extensive damage, especially due to deck rotation, shear keys failure, abutment unseating and column- bent drift. This research, therefore, aims to study the behavior of skewed and straight highway overpass bridges both with and without taking into account the effects of Soil-Structure Interaction (SSI) due to near-fault ground motions. Due to several sources of uncertainty associated with the ground motions, soil and structure, a probabilistic approach is needed. Thus, a probabilistic methodology similar to the one developed by the Pacific Earthquake Engineering Research Center (PEER) has been utilized to assess the probability of damage due to various levels of shaking using appropriate intensity measures with minimum dispersions. The probabilistic analyses were performed for various bridge configurations and site conditions, including sand ranging from loose to dense and clay ranging from soft to stiff, in order to evaluate the effects. The results proved a considerable susceptibility of skewed bridges to deck rotation and shear keys displacement. It was also found that SSI had a decreasing effect on the damage probability for various demands compared to the fixed-base model without including SSI. However, deck rotation for all types of the soil and also abutment unseating for very loose sand and soft clay showed an increase in damage probability compared to the fixed-base model. The damage probability for various demands has also been found to decrease with an increase of soil strength for both sandy and clayey sites. With respect to the variations in the skew angle, an increase in skew angle has had an increasing effect on the amplitude of the seismic response for various demands. Deck rotation has been very sensitive to the increase in the skew angle; therefore, as the skew angle increased, the deck rotation responded accordingly. Furthermore, abutment unseating showed an increasing trend due to an increase in skew angle for both fixed-base and SSI models.
文摘The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point.
基金National Natural Science Foundation of China under Grant Nos.52178353,51808421the Fundamental Research Funds for the Central Universities(WUT:2020III043)。
文摘The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier system were depicted by a hyperbolic-hysteretic and an equivalent elastoplastic model,respectively.One hundred twenty ground motions with varying peak accelerations were considered,along with the variations in bridge superstructure mass and pile flexural rigidity.Comprehensive comparison studies suggested that peak pile-cap acceleration and peak pile-cap velocity are the optimal ground motion intensity measures for seismic responses of the pier and the pile,respectively.Furthermore,based on two optimal ground motion intensity measures and using curvature ductility to quantify different damage states,seismic fragility analyses were performed.The pier generally had no evident damage except when the bridge girder mass was equal to 960 t,which seemed to be comparatively insensitive to the varying pile flexural rigidity.In comparison,the pile was found to be more vulnerable to seismic damage and its failure probabilities tended to clearly reduce with the increment of pile flexural rigidity,while the influence of the bridge girder mass was relatively minor.
基金Sponsored by Jiangsu Planned Project for Postdoctoral (0901014B)
文摘The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.
基金supported by The Fundamental Research Funds for the Central Universities,China。
文摘The appropriate terminal attitude of missile is important to improve the damage effectiveness of fragmentation warhead against aircraft targets.In this paper,three missile terminal attitude selection methods are proposed to solve the problem of terminal attitude selection in different situations according to their respective evaluation indexes.The MVE-based method uses the damage probability of each detonation point around the aircraft at a given attitude of missile to calculate the Mean Volume of Effectiveness(MVE)at the corresponding attitude,and then uses the MVE for different attitudes to select the terminal strike attitude.The detonation position-based method addresses the case where the missile detonation position can be assessed in advance.Given the effects of missile guidance errors and fuze activation position errors,Monte Carlo simulations are used to calculate the damage probability of aircraft with different strike attitudes,from which the terminal strike attitude is selected.The BP-ANN model-based method uses the constructed Back Propagation Artificial Neural Network(BP-ANN)model instead of simulation to calculate the evaluation indexes in the corresponding cases of MVE-based method and Detonation position-based method,which can improve the efficiency of attitude selection.Simulations are conducted for different scenarios to verify the feasibility and effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant Nos.51878445,51938011 and 51908405)。
文摘It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.