Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of g...Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.展开更多
The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountai...The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.展开更多
This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Him...This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh(India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade(2000-2016) and has dammed the Satluj River partially since year 2013,damaging ~200 m stretch of the National Highway(NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500.The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900 ± 1142 m^2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June(~100 mm) and 16 June(~115 mm),are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling(FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it(debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80 ±0.32 million m^3 mass that will completely dam the river to a height of 76±30 m above the river bed.展开更多
To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Do...To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Dongxiguan, Caojie) were collected in January and July,2016. The major cations, anions, and δ^(13)C_(DIC) values were analyzed. It was found that the dissolved compositions are dominated by carbonate weathering, while sulfuric acids may play a relatively important role during carbonate weathering and increasing DIC concentration. Different reservoirs had variable characteristics of water physiochemical stratification. The DIC concentrations of reservoir water were lower in summer than those in winter due to the dilute effects and intensive aquatic photosynthesis, as well as imported tributaries. The δ^(13)C_(DIC) values in Tingzikou Reservoir were higher during summer than those in winter,which indicated that intensive photosynthesis increased the δ^(13)C_(DIC) values in residual water, but a similar trend was not obvious in other reservoirs. Except for in Xinzheng Reservoir, the δ^(13)C_(DIC) values in inflow and outflow reservoir water were lower than those in the surface water of stratified sampling in summer. For stratified sampling, it could be found that, in summer, the Tingzikou Reservoir δ^(13)C_(DIC) values significantly decreased with water depthdue to the anaerobic breakdown of organic matter. The significant correlation(p<0.01 or 0.05) between the DIC concentrations, the δ^(13)C_(DIC) values and anthropogenic species(Na^++K^+, Cl~–, SO_4^(2-) and NO_3^-) showed that the isotope composition of DIC can be a useful tracer of contaminants. In total, Tingzikou Reservoir showed lacustrine features, Xinzheng Reservoir and Dongxiguan Reservoir had "transitional'' features, and Caojie Reservoir had a total of "fluvial'' features. Generally, cascade reservoirs in the Jialing River exhibited natural river features rather than typical lake features due to characteristics of reservoir water in physiochemical stratification, spatiotemporal variations of DIC concentrations and isotopic compositions. It is evident that the dissolved inorganic carbon dynamics of natural rivers had been partly remolded by dam building.展开更多
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river da...Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.展开更多
Southwest China is the primary area for damming rivers to produce hydroelectric energy and store water.River damming has changed hydrodynamic,chemical,and biological processes,which are related to sinks and sources of...Southwest China is the primary area for damming rivers to produce hydroelectric energy and store water.River damming has changed hydrodynamic,chemical,and biological processes,which are related to sinks and sources of greenhouse gases and carbon and nitrogen fluxes of different interfaces.Here,I provide an introduction to a river damming-related foundation,the National Key R&D Program of China(2016YTA0601000).Supported by the foundation,we carried out research on multiprocesses/multi-interfaces of carbon and nitrogen biogeochemical cycles in a dammed river system and have produced important results,as presented in this issue of the journal.展开更多
A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are ...A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are used to understand the snowfall process, including why the precipitation maxima formed along the Yeongdong coastal region rather than over the mountain slope and ridge top during. The numerical simulation with a 4-kin horizontal grid spacing and 43 levels reproduces very well the narrow snowband located off the eastern Korean coast, away from, instead of over, the Yeongdong coastal mountain range. The general evolution of the snowband agrees quite well with radar observations, while the water-equivalent precipitation amount agrees reasonably well with radar precipitation estimate. The simulation results clearly show that the snow band developed due to the lifting by a coastal front that developed because of the damming of cold air against the eastern slope of the coastal mountain range. The damming was enhanced by the advection of cold air by a tow-level mountain-parallel jet from the north, formed due to geostrophic adjustment as the on-shore upslope air was decelerated by the mountain blocking. As the onshore flow weakened later due to synoptic-scale flow pattern change, the cold front propagated off shore and the precipitation dissipated.展开更多
Damming landslides are very common in China, they ever blocked the rivers and streams completely or partly, and form natural lakes. Now more than 150 damming landslides in China are recognized through field investigat...Damming landslides are very common in China, they ever blocked the rivers and streams completely or partly, and form natural lakes. Now more than 150 damming landslides in China are recognized through field investigation and data collection indoors. These Landslides distribute in steep mountainous counties around the Qinghai—Tibet Plateau, and mainly of which in southwest China and northwest China.. Studies show that the distribution of damming landslides has a close relation with the event of the Tibet plateau upheaval. The thermodynamic effect on the free atmosphere results from rapid upheaval of Qinghai\|Tibet plateau is more and more intensive, it causes air to circulate from east to west. In winter, the high Tibet Plateau leads the cool air gather quickly and high cool potential to be stronger. On one side, an anticyclone cool high pressure forms near the ground surface at the altitude of 4000~5000m, and produces winter monsoon wind. On the other side, the shielding effect of the plateau impedes the air from Siberia touching with the air from south Indian Ocean, which causes the cool air from Siberia enters China frequently and strengthens the cool and drought in northwest China. In summer, the monsoon wind is impeded by the plateau and cannot enter into north China, where it is dry, it can only moves around the plateau and at the edge enters into southwest, south, middle and east China, where the rainfall process is strong. Thus south and east of the plateau become the areas with many damming landslides resulted from heavy rain.展开更多
The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a...The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a landslide dam.To address this gap,we conducted a study using the smoothed particle hydrodynamics numerical method to investigate the evolution of landslide dams.Our study included 17 numerical simulations to examine the effects of several factors on the geometry of landslide dams,including valley inclination,sliding angle,landslide velocity,and landslide mass repose angle.Based on this,three rapid prediction models were established for calculating the maximum height,the minimum height,and the maximum width of a landslide dam.The results show that the downstream width of a landslide dam remarkably increases with the valley inclination.The position of the maximum dam height along the valley direction is independent of external factors and is always located in the middle of the landslide width area.In contrast,that position of the maximum dam height across the valley direction is significantly influenced by the sliding angle and landslide velocity.To validate our models,we applied them to three typical landslide dams and found that the calculated values of the landslide dam geometry were in good agreement with the actual values.The findings of the current study provide a better understanding of the evolution and geometry of landslide dams,giving crucial guidance for the prediction and early warning of landslide dam disasters.展开更多
204 persons were killed while two hydropower projects located in close proximity at Rishiganga(13.2 MW),and Tapoban(520 MW)were damaged in Dhauliganga flood of February 7,2021 in the Indian Himalaya.This incidence occ...204 persons were killed while two hydropower projects located in close proximity at Rishiganga(13.2 MW),and Tapoban(520 MW)were damaged in Dhauliganga flood of February 7,2021 in the Indian Himalaya.This incidence occurred during the winter season when the discharge of the glacier fed rivers is minimal,and no rain was experienced in the region around the time of the flood.Despite discharge of the main river,Rishiganga,not involved in the flood due to damming upstream of its confluence with Raunthi Gadhera,based on field evidences massive volume of around 6 million cu m water involved in this flood is attributed to sequential intermittent damming at three different places;(i)Raunthi Gadhera was dammed first in its upper reaches,(ii)Rishiganga river was then dammed to the north of Murunna,and(iii)finally Dhauliganga river was dammed around Rini village to the upstream of its confluence with Rishiganga river.Lacking warning system only enhanced the flood-induced devastation.Legally binding disaster risk assessment regime,together with robust warning generation,and dissemination infrastructure are therefore recommended for all major infrastructure projects.展开更多
Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(...Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laborato...As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.展开更多
A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t...A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.展开更多
A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl...A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.展开更多
The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the We...The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the Western Himalayas,where hydroelectric projects(HEPs)have significantly altered river flow regimes.The research investigates the impact of flow alterations on the composition and structure of riparian vegetation in the Garhwal Himalayas,specifically analysing four rivers regulated by hydroelectric projects.Utilizing the paired-reach comparison method,control(undisturbed),diverted(downstream of barrage/dam),and altered flow conditions(downstream of water outlet)were examined.The research reveals diverse and unique riparian ecosystems,with 89 genera and 113 taxa identified,showcasing the dominance of families like Asteraceae and Lamiaceae.The study unveils the structural importance of key species such as Berberis asiatica and Artemisia nilagirica.The density,diversity,and richness of shrub and herb species vary significantly across flow conditions.Notably,altered flow conditions demonstrate resilience in vegetation structure,while diverted conditions exhibit decreased species richness and density.The study emphasizes the importance of nuanced environmental flow management for mitigating adverse effects on riparian biodiversity in the fragile Himalayan region.These findings contribute to the global discourse on dam impacts and riparian ecology,shedding light on the complexities of this dynamic relationship in a vulnerable ecosystem.展开更多
This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled ...This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.展开更多
基金support of the National Natural Science Foundation of China(U20A20111,42107189).
文摘Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.
基金supported by the National Basic Research and Development Program of China (Grant No. 973:2011CB409902)the Key Project of National Natural Science Foundation of China (Grant No. 41172321)Southwest Jiaotong University Doctor Innovation Fund
文摘The frequency and extent of debris flows have increased tremendously due to the extreme weather and the Wenchuan earthquake on May 12, 2008. Previous studies focused on the debris flow from gullies damming the mountain streams. In this paper, an equation for the run-out distance of debris flow in the main river is proposed based on the dynamic equation of debris flow at different slopes given by Takahashi. By undertaking field investigations and flume experiments, a new calculation method of the volume of debris flow damming large river is obtained. Using the percolation theory and the renormalization group theory it was deduced that the large particles should comprise more than 50% for forming a stable debris flow dam. Hence, the criteria of damming large river by debris flow is presented in terms of run-out distance and grain composition which was then validated through the event of damming river by debris flow at Gaojia gully, the upper reaches of the Minjiang River, Sichuan, China, on July 3, 2011.
基金the financial help by the Indian Space Research Organization (ISRO) through TDP project for debris flow modelling
文摘This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh(India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade(2000-2016) and has dammed the Satluj River partially since year 2013,damaging ~200 m stretch of the National Highway(NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500.The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900 ± 1142 m^2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June(~100 mm) and 16 June(~115 mm),are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling(FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it(debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80 ±0.32 million m^3 mass that will completely dam the river to a height of 76±30 m above the river bed.
基金financially supported by the National Key Research and Development Program of China(2016YFA0601000)the National Natural Science Foundation of China(Grant No.41373136)
文摘To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Dongxiguan, Caojie) were collected in January and July,2016. The major cations, anions, and δ^(13)C_(DIC) values were analyzed. It was found that the dissolved compositions are dominated by carbonate weathering, while sulfuric acids may play a relatively important role during carbonate weathering and increasing DIC concentration. Different reservoirs had variable characteristics of water physiochemical stratification. The DIC concentrations of reservoir water were lower in summer than those in winter due to the dilute effects and intensive aquatic photosynthesis, as well as imported tributaries. The δ^(13)C_(DIC) values in Tingzikou Reservoir were higher during summer than those in winter,which indicated that intensive photosynthesis increased the δ^(13)C_(DIC) values in residual water, but a similar trend was not obvious in other reservoirs. Except for in Xinzheng Reservoir, the δ^(13)C_(DIC) values in inflow and outflow reservoir water were lower than those in the surface water of stratified sampling in summer. For stratified sampling, it could be found that, in summer, the Tingzikou Reservoir δ^(13)C_(DIC) values significantly decreased with water depthdue to the anaerobic breakdown of organic matter. The significant correlation(p<0.01 or 0.05) between the DIC concentrations, the δ^(13)C_(DIC) values and anthropogenic species(Na^++K^+, Cl~–, SO_4^(2-) and NO_3^-) showed that the isotope composition of DIC can be a useful tracer of contaminants. In total, Tingzikou Reservoir showed lacustrine features, Xinzheng Reservoir and Dongxiguan Reservoir had "transitional'' features, and Caojie Reservoir had a total of "fluvial'' features. Generally, cascade reservoirs in the Jialing River exhibited natural river features rather than typical lake features due to characteristics of reservoir water in physiochemical stratification, spatiotemporal variations of DIC concentrations and isotopic compositions. It is evident that the dissolved inorganic carbon dynamics of natural rivers had been partly remolded by dam building.
基金the support from the State's Key Project of Research and Development Plan of China (2016YFA0601002)the National Natural Science Foundation of China (41522207,41571130042)
文摘Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.
基金kindly supported by the National Key Research and Development Program of China through grant 2016YFA0601000
文摘Southwest China is the primary area for damming rivers to produce hydroelectric energy and store water.River damming has changed hydrodynamic,chemical,and biological processes,which are related to sinks and sources of greenhouse gases and carbon and nitrogen fluxes of different interfaces.Here,I provide an introduction to a river damming-related foundation,the National Key R&D Program of China(2016YTA0601000).Supported by the foundation,we carried out research on multiprocesses/multi-interfaces of carbon and nitrogen biogeochemical cycles in a dammed river system and have produced important results,as presented in this issue of the journal.
基金supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MEST)(Grant No. 2011-0013879)supported by NSF (Grant Nos. AGS-0802888,AGS-1046171,and EEC-0313747)
文摘A 24-h simulation with the Advanced Regional Prediction System (ARPS) nonhydrostatic model is performed for the heavy snowfall event of 3-4 February 1998 along the eastern coast of Korean Peninsula; the results are used to understand the snowfall process, including why the precipitation maxima formed along the Yeongdong coastal region rather than over the mountain slope and ridge top during. The numerical simulation with a 4-kin horizontal grid spacing and 43 levels reproduces very well the narrow snowband located off the eastern Korean coast, away from, instead of over, the Yeongdong coastal mountain range. The general evolution of the snowband agrees quite well with radar observations, while the water-equivalent precipitation amount agrees reasonably well with radar precipitation estimate. The simulation results clearly show that the snow band developed due to the lifting by a coastal front that developed because of the damming of cold air against the eastern slope of the coastal mountain range. The damming was enhanced by the advection of cold air by a tow-level mountain-parallel jet from the north, formed due to geostrophic adjustment as the on-shore upslope air was decelerated by the mountain blocking. As the onshore flow weakened later due to synoptic-scale flow pattern change, the cold front propagated off shore and the precipitation dissipated.
文摘Damming landslides are very common in China, they ever blocked the rivers and streams completely or partly, and form natural lakes. Now more than 150 damming landslides in China are recognized through field investigation and data collection indoors. These Landslides distribute in steep mountainous counties around the Qinghai—Tibet Plateau, and mainly of which in southwest China and northwest China.. Studies show that the distribution of damming landslides has a close relation with the event of the Tibet plateau upheaval. The thermodynamic effect on the free atmosphere results from rapid upheaval of Qinghai\|Tibet plateau is more and more intensive, it causes air to circulate from east to west. In winter, the high Tibet Plateau leads the cool air gather quickly and high cool potential to be stronger. On one side, an anticyclone cool high pressure forms near the ground surface at the altitude of 4000~5000m, and produces winter monsoon wind. On the other side, the shielding effect of the plateau impedes the air from Siberia touching with the air from south Indian Ocean, which causes the cool air from Siberia enters China frequently and strengthens the cool and drought in northwest China. In summer, the monsoon wind is impeded by the plateau and cannot enter into north China, where it is dry, it can only moves around the plateau and at the edge enters into southwest, south, middle and east China, where the rainfall process is strong. Thus south and east of the plateau become the areas with many damming landslides resulted from heavy rain.
基金funding from the National Natural Science Foundation of China(42207228,51879036,51579032)the Liaoning Revitalization Talents Program(XLYC2002036)the Sichuan Science and Technology Program(2022NSFSC1060)。
文摘The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a landslide dam.To address this gap,we conducted a study using the smoothed particle hydrodynamics numerical method to investigate the evolution of landslide dams.Our study included 17 numerical simulations to examine the effects of several factors on the geometry of landslide dams,including valley inclination,sliding angle,landslide velocity,and landslide mass repose angle.Based on this,three rapid prediction models were established for calculating the maximum height,the minimum height,and the maximum width of a landslide dam.The results show that the downstream width of a landslide dam remarkably increases with the valley inclination.The position of the maximum dam height along the valley direction is independent of external factors and is always located in the middle of the landslide width area.In contrast,that position of the maximum dam height across the valley direction is significantly influenced by the sliding angle and landslide velocity.To validate our models,we applied them to three typical landslide dams and found that the calculated values of the landslide dam geometry were in good agreement with the actual values.The findings of the current study provide a better understanding of the evolution and geometry of landslide dams,giving crucial guidance for the prediction and early warning of landslide dam disasters.
文摘204 persons were killed while two hydropower projects located in close proximity at Rishiganga(13.2 MW),and Tapoban(520 MW)were damaged in Dhauliganga flood of February 7,2021 in the Indian Himalaya.This incidence occurred during the winter season when the discharge of the glacier fed rivers is minimal,and no rain was experienced in the region around the time of the flood.Despite discharge of the main river,Rishiganga,not involved in the flood due to damming upstream of its confluence with Raunthi Gadhera,based on field evidences massive volume of around 6 million cu m water involved in this flood is attributed to sequential intermittent damming at three different places;(i)Raunthi Gadhera was dammed first in its upper reaches,(ii)Rishiganga river was then dammed to the north of Murunna,and(iii)finally Dhauliganga river was dammed around Rini village to the upstream of its confluence with Rishiganga river.Lacking warning system only enhanced the flood-induced devastation.Legally binding disaster risk assessment regime,together with robust warning generation,and dissemination infrastructure are therefore recommended for all major infrastructure projects.
基金the support from the Key Program Grant from National Natural Science Foundation of China (52039005)Grant from State Key Laboratory of Hydroscience and Engineering (2022-KY-01).
文摘Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金supported byÁreas Protegidas da Amazônia(ARPA)Amazonas Distribuidora de Energia S.A.,and Associação Comunidade Waimiri Atroari+4 种基金Rufford Foundation(grant number 13675-1)the Conservation Food and Health Foundation,and Idea WildNational Geographic Society grant(NGS-93497C-22)awarded to CAP.I.J is funded through a UKRI Future Leaders Fellowship(MR/T019018/1)M.B received a productivity grant from CNPq(304189/2022-7)European Union’s Horizon 2020 research and innovation programme under the grant agreement No.854248(TROPIBIO)。
文摘As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20602,U2040221).
文摘A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.
文摘A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation.
文摘The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the Western Himalayas,where hydroelectric projects(HEPs)have significantly altered river flow regimes.The research investigates the impact of flow alterations on the composition and structure of riparian vegetation in the Garhwal Himalayas,specifically analysing four rivers regulated by hydroelectric projects.Utilizing the paired-reach comparison method,control(undisturbed),diverted(downstream of barrage/dam),and altered flow conditions(downstream of water outlet)were examined.The research reveals diverse and unique riparian ecosystems,with 89 genera and 113 taxa identified,showcasing the dominance of families like Asteraceae and Lamiaceae.The study unveils the structural importance of key species such as Berberis asiatica and Artemisia nilagirica.The density,diversity,and richness of shrub and herb species vary significantly across flow conditions.Notably,altered flow conditions demonstrate resilience in vegetation structure,while diverted conditions exhibit decreased species richness and density.The study emphasizes the importance of nuanced environmental flow management for mitigating adverse effects on riparian biodiversity in the fragile Himalayan region.These findings contribute to the global discourse on dam impacts and riparian ecology,shedding light on the complexities of this dynamic relationship in a vulnerable ecosystem.
基金the financial supports provided by the National Natural Science Foundation of China(U2040222,52293431,and 52278259)。
文摘This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties.