This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coi...This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.展开更多
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ...In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.展开更多
Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damp...Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.展开更多
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
The damping-controlled deployment technology of flexible Z-folded inflatable tube is one of the key technologies of space inflatable structures.Constraint failure between couple nodes is proposed to simulate the dampi...The damping-controlled deployment technology of flexible Z-folded inflatable tube is one of the key technologies of space inflatable structures.Constraint failure between couple nodes is proposed to simulate the damping-controlled deployment.And the equation of constraint failure is established.Inflation process of Z-folded tube is simulated with control volume method.Compared with uncontrolled method,it is indicated that the new method can effectively solve the disordered deployment problem of the slender Z-folded inflatable tube.By analyzing the displacement of the apical of the folded tube with different constraint forces during deployment process,the concept of effective constraint force is proposed.In the effective region of constraint force,the folded tube deploys with little retraction and fluctuation.Otherwise,The flexible folded tube would deploy disorderly or even cannot deploy.The simulation method and numerical results have a theoretical and instructive significance to the research on the space inflatable structures.展开更多
In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,ef...In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,effectively reduces the structural response in the case of relatively small story drifts,which occur during earthquakes.A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted.From the experimental and analytical results,it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response,requires less energy input,operates with higher reliability,and can be manufactured at a lower cost and used in a wider range of engineering applications.展开更多
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, whi...A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.展开更多
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric d...The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness.展开更多
In this paper, we are concerned with the existence of mild solution and controllability for a class of nonlinear fractional control systems with damping in Hilbert spaces.Our first step is to give the representation o...In this paper, we are concerned with the existence of mild solution and controllability for a class of nonlinear fractional control systems with damping in Hilbert spaces.Our first step is to give the representation of mild solution for this control system by utilizing the general method of Laplace transform and the theory of(α, γ)-regularized families of operators. Next, we study the solvability and controllability of nonlinear fractional control systems with damping under some suitable sufficient conditions. Finally, two examples are given to illustrate the theory.展开更多
A statistic linearization analysis method of bad nolinear hydraulic active damping suspension is provided.Also the optimum control strategy of semi active suspension and graded control strategy based on it are puted ...A statistic linearization analysis method of bad nolinear hydraulic active damping suspension is provided.Also the optimum control strategy of semi active suspension and graded control strategy based on it are puted forward.Experimental researches are carried out on a 2 DOF(degree of freedom) hydraulic active damping suspension test system.The results showed that an excellent control effectiveness could be obtained by using statistic linearization optimum control which unfortunely requests continuously regulationg the damp in an accurate way and costs much in engeering application.On the contrary,the results also showed that graded control is more practicable which has a control effectiveness close to the optimum control and costs less.展开更多
The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling ...The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling system with an ERF damper is established, and thechaffer suppression mechanism of the ER effect is discussed theoretically. Both the theoreticalstudy and the experimental investigation show that the additional damping and additional stiffnessproduced by the ERF increase with the rise in the strength of electric field E, but their influenceon the cuffing stability is different. Only when both additional damping and additional stiffnesscooperate, the milling chatter can be suppressed quickly and effectively. In additional, an ERFdamper used on the arbor of horizontal spindle milling machine is developed, and a series of millingchatter control experiments are performed. The experimental results show that the milling chaffercan be suppressed effectively by using the ER damper.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to ca...Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.展开更多
A model predictive control( MPC) based active damping controller for automotive driveline oscillations with time-delay consideration is proposed. A simplified driveline model considering time delay is modeled and co...A model predictive control( MPC) based active damping controller for automotive driveline oscillations with time-delay consideration is proposed. A simplified driveline model considering time delay is modeled and converted to a linear parameter varying state space equation. Based on the model and model predictive control theory,an active damping controller is designed for drivability and comfortability improvement. In order to verify the designed controller,a driveline with engine is modeled to simulate the tip-in/out driving operation. An MPC active damping controller without considering time delay is simulated together with the proposed controller. The simulation results show that,by adopting the new MPC active damping controller,the vibration of the vehicle is reduced and the drivability and comfortability are improved.展开更多
The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been p...The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been proposed.Sliding control laws and adaptive sliding laws are designed for exponentially damped oscillator respectively in cases that the bound of the external exciting force is known or unknown.The viability and effectiveness of the above control designs have been validated by numerical simulations.展开更多
A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based ...A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal vibration of the experimental thin-plate structure.展开更多
Active constrained layer damping (ACLD) combines the simplicity and reliability of passive damping with the light weight and high efficiency of active actuators to obtain high damping over a wide frequency band. A f...Active constrained layer damping (ACLD) combines the simplicity and reliability of passive damping with the light weight and high efficiency of active actuators to obtain high damping over a wide frequency band. A fluid-filled prismatic shell is set up to investigate the validity and efficiency of ACLD treatments in the case of fluid-structure interaction. By using state subspace identification method, modal parameters of the ACLD system are identified and a state space model is established subsequently for the design of active control laws. Experiments are conducted to the fluid-filled prismatic shell subjected to random and impulse excitation, respectively, For comparison, the shell model without fluid interaction is experimented as well. Experimental results have shown that the ACLD treatments can suppress vibration of the fluid-free and fluid-filled prismatic shell effectively. Under the same control gain, vibration attenuation is almost the same in both cases.展开更多
The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular valu...The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.展开更多
This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power...This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power system. Also, a novel adaptive neural controller based on neural identifier is proposed for the HVDC which is capable of damping out LFO and sub synchronous oscillations (SSO). For comparison purposes, results of system based damping neural controller are compared with a lead-lag controller based on quantum particle swarm optimization (QPSO). It is shown that implementing adaptive damping controller not only improves the stability of power system but also can overcome drawbacks of conventional compensators with fixed parameters. In order to determine the most effective input of HVDC system to apply supplementary controller signal, analysis based on singular value decomposition is performed. To evaluate the performance of the proposed controller, transient simulations of detailed nonlinear system are considered.展开更多
This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator...This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.展开更多
基金National Natural Science Foundation of China (50275114)
文摘This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.
基金Projects(51975376,51505289)supported by the National Natural Science Foundation of ChinaProject(19ZR1435400)supported by the Natural Science Foundation of Shanghai,China。
文摘In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.
基金Project(51007042) supported by the National Natural Science Foundation of China
文摘Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
基金supported by the National Natural Science Foundation of China(No.11172137)the Fund of Aeronautics Science(No.20122910001)
文摘The damping-controlled deployment technology of flexible Z-folded inflatable tube is one of the key technologies of space inflatable structures.Constraint failure between couple nodes is proposed to simulate the damping-controlled deployment.And the equation of constraint failure is established.Inflation process of Z-folded tube is simulated with control volume method.Compared with uncontrolled method,it is indicated that the new method can effectively solve the disordered deployment problem of the slender Z-folded inflatable tube.By analyzing the displacement of the apical of the folded tube with different constraint forces during deployment process,the concept of effective constraint force is proposed.In the effective region of constraint force,the folded tube deploys with little retraction and fluctuation.Otherwise,The flexible folded tube would deploy disorderly or even cannot deploy.The simulation method and numerical results have a theoretical and instructive significance to the research on the space inflatable structures.
文摘In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,effectively reduces the structural response in the case of relatively small story drifts,which occur during earthquakes.A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted.From the experimental and analytical results,it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response,requires less energy input,operates with higher reliability,and can be manufactured at a lower cost and used in a wider range of engineering applications.
基金supported by Senior Visiting Scholarship of Chinese Scholarship Council (No.20H05002)Natural Science Foundation of Education Commission of Jiangsu Province, China (No.03KJB510072)Six Categories of Summit Talents of Jiangsu Province, China (No. 2006194).
文摘A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.
基金Senior Visiting Scholarship of Chinese Scholarship Council (No.20H05002)Jiangsu Provincial Natural Science Foundation of Education Commission of China (No.03KJB510072)Jiangsu Provincial Six Categories of Summit Talents of China (No.2OO6194)
文摘The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness.
基金NNSF of China(11671101,11661001)NSF of Guangxi(2018GXNSFDA138002)+1 种基金NSF of Hunan(2018JJ3519)the funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie(823731CONMECH)
文摘In this paper, we are concerned with the existence of mild solution and controllability for a class of nonlinear fractional control systems with damping in Hilbert spaces.Our first step is to give the representation of mild solution for this control system by utilizing the general method of Laplace transform and the theory of(α, γ)-regularized families of operators. Next, we study the solvability and controllability of nonlinear fractional control systems with damping under some suitable sufficient conditions. Finally, two examples are given to illustrate the theory.
基金This project is supported by Cao Guangbiao High Technology Foundation of Zhejiang University
文摘A statistic linearization analysis method of bad nolinear hydraulic active damping suspension is provided.Also the optimum control strategy of semi active suspension and graded control strategy based on it are puted forward.Experimental researches are carried out on a 2 DOF(degree of freedom) hydraulic active damping suspension test system.The results showed that an excellent control effectiveness could be obtained by using statistic linearization optimum control which unfortunely requests continuously regulationg the damp in an accurate way and costs much in engeering application.On the contrary,the results also showed that graded control is more practicable which has a control effectiveness close to the optimum control and costs less.
基金This project is supported by Provincial Science and Technology Foundation of Jilin, China(No.963532) Received October 11, 2001
文摘The electrorheological fluid(ERF)is a kind of intelligent material withbright prospects for industry applications, which has viscoelastic characteristic under the appliedelectric field. The dynamic model of a milling system with an ERF damper is established, and thechaffer suppression mechanism of the ER effect is discussed theoretically. Both the theoreticalstudy and the experimental investigation show that the additional damping and additional stiffnessproduced by the ERF increase with the rise in the strength of electric field E, but their influenceon the cuffing stability is different. Only when both additional damping and additional stiffnesscooperate, the milling chatter can be suppressed quickly and effectively. In additional, an ERFdamper used on the arbor of horizontal spindle milling machine is developed, and a series of millingchatter control experiments are performed. The experimental results show that the milling chaffercan be suppressed effectively by using the ER damper.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金Science and Technology Fund of NWPU Under Grant No. M450211 Seed Fund of NWPU Under Grant No. Z200729
文摘Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
基金Supported by the National Natural Science Foundation of China(51475043)
文摘A model predictive control( MPC) based active damping controller for automotive driveline oscillations with time-delay consideration is proposed. A simplified driveline model considering time delay is modeled and converted to a linear parameter varying state space equation. Based on the model and model predictive control theory,an active damping controller is designed for drivability and comfortability improvement. In order to verify the designed controller,a driveline with engine is modeled to simulate the tip-in/out driving operation. An MPC active damping controller without considering time delay is simulated together with the proposed controller. The simulation results show that,by adopting the new MPC active damping controller,the vibration of the vehicle is reduced and the drivability and comfortability are improved.
基金National Natural Science Foundation of China(No.11802338)
文摘The purpose is to design the control method for a single-degree-of-freedom(SDOF)exponentially damped oscillator.Based on the Lyapunov stability theory,sliding mode control and adaptive sliding mode control have been proposed.Sliding control laws and adaptive sliding laws are designed for exponentially damped oscillator respectively in cases that the bound of the external exciting force is known or unknown.The viability and effectiveness of the above control designs have been validated by numerical simulations.
基金This project is supported by National Natural Science Foundation of China(No.50275114,No.10476020).
文摘A kind of novel multi-layer piezoelectric actuator is proposed and integrated with controllable constrained damping treatment to perform hybrid vibration control. The governing equation of the system is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials, which shows that the magnitude of control force exerted by multi-layer piezoelectric actuator is the quadratic function of the number of piezoelectric laminates used but in direct proportion to control voltage. This means that the multi-layer actuator can produce greater actuating force than that by piezoelectric laminate actuator with the same area under the identical control voltage. The optimal location placement of the multi-layer piezoelectric actuator is also discussed. As an example, the hybrid vibration control of a cantilever rectangular thin-plate is numerically simulated and carried out experimentally. The simulated and experimental results validate the power of multi-layer piezoelectric actuator and indicate that the present hybrid damping technique can effectively suppress the low frequency modal vibration of the experimental thin-plate structure.
基金supported by National Natural Science Foundation of China (No. 10672099).
文摘Active constrained layer damping (ACLD) combines the simplicity and reliability of passive damping with the light weight and high efficiency of active actuators to obtain high damping over a wide frequency band. A fluid-filled prismatic shell is set up to investigate the validity and efficiency of ACLD treatments in the case of fluid-structure interaction. By using state subspace identification method, modal parameters of the ACLD system are identified and a state space model is established subsequently for the design of active control laws. Experiments are conducted to the fluid-filled prismatic shell subjected to random and impulse excitation, respectively, For comparison, the shell model without fluid interaction is experimented as well. Experimental results have shown that the ACLD treatments can suppress vibration of the fluid-free and fluid-filled prismatic shell effectively. Under the same control gain, vibration attenuation is almost the same in both cases.
文摘The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.
文摘This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power system. Also, a novel adaptive neural controller based on neural identifier is proposed for the HVDC which is capable of damping out LFO and sub synchronous oscillations (SSO). For comparison purposes, results of system based damping neural controller are compared with a lead-lag controller based on quantum particle swarm optimization (QPSO). It is shown that implementing adaptive damping controller not only improves the stability of power system but also can overcome drawbacks of conventional compensators with fixed parameters. In order to determine the most effective input of HVDC system to apply supplementary controller signal, analysis based on singular value decomposition is performed. To evaluate the performance of the proposed controller, transient simulations of detailed nonlinear system are considered.
文摘This paper addresses the enhancement of power system stability by simultaneous tuning of synergetic excitation damping controller and SVC (static var compensator)-based damping controllers. Each machine or generator is considered as a subsystem and its interaction with the remaining part of the system, the SVC inclusive, is modeled as a quadratic function of the active power delivered by the generator. Stable manifold is constructed for each excitation controller and based on that, an effective damping controller is derived. A lead-lag compensator is employed as a supplementary controller for the SVC. PSO (particle swarm optimization) algorithm is effectively utilized to simultaneously tune the parameters for the excitation damping controller(s) and the SVC supplementary controller. The coordination of the controllers effectively dampens the power angle oscillation and regulates the generator terminal voltage when a fault occurs. Simulation results are obtained by using the PAT (power analysis toolbox) for a SMIB (single machine infinite bus) system and a two area power system.