期刊文献+
共找到1,091篇文章
< 1 2 55 >
每页显示 20 50 100
Control strategies and experimental verifications of the electromagnetic mass damper system for structural vibration control 被引量:5
1
作者 张春巍 欧进萍 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第2期181-192,共12页
The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems.... The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations. 展开更多
关键词 structural vibration control electromagnetic mass damper (EMD) system control strategy shaking table test pole assignment control robustness
下载PDF
Dynamic properties analysis of a stay cable-damper system in consideration of design and construction factors 被引量:1
2
作者 Dan Danhui Chen Yanyang Xiao Rong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期317-326,共10页
A numerical solution based on the Steffensen stable point iterative method is proposed to resolve the transcendental frequency equation of a stay cable-damper system. The frequency equation, which considers clamped su... A numerical solution based on the Steffensen stable point iterative method is proposed to resolve the transcendental frequency equation of a stay cable-damper system. The frequency equation, which considers clamped supports and fl exural rigidity of the cable, is intended to investigate the infl uence of the parameters of the cable damper system on its dynamic characteristics. Two factors involved in the design and construction phases, the damping coeffi cient induced by external dampers and the cable tension, are the focus of this study. Their impact on modal frequencies and damping ratios in these two phases of cable-damper systems are investigated by resolving the equation with the proposed solution. It is shown that the damping coeffi cient and cable tension exert more noticeable effects on the modal damping ratios than on the modal frequencies of stay cable-damper systems, and the two factors can serve as design variables in the design phase and as adjustment factors in the construction phase. On the basis of the results, a roadmap for system-level optimal design of stay cable-damper systems that can achieve global optimal vibration suppression for the entire bridge is proposed and discussed. 展开更多
关键词 CABLE damper damping coeffi cient cable tension dynamic property optimal design
下载PDF
Experimental Studies of the Practicability of a New Type Tuned Mass Damper System
3
作者 张耀庭 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期87-89,共3页
Based on the principle of Tuned Mass Damper (TMD),the test of a new quake reduction system was investigated.The main structure of the system is connected with the top floor through Laminated Rubber Bearing (LRB) to m... Based on the principle of Tuned Mass Damper (TMD),the test of a new quake reduction system was investigated.The main structure of the system is connected with the top floor through Laminated Rubber Bearing (LRB) to make up a huge TMD system suspended structure. It was shown from the test that the new TMD quake reduction system can reduce the acceleration of the top floor by more than one quarter if the parameters are chosen efficiently.Since the good effectiveness and easy availability, this system has the practical value in earth quake engineering. 展开更多
关键词 suspended top floor tuned mass damper laminated rubber bearing shaking tables test
下载PDF
Research on Practicability and Feasibility for a New-Type Tuned Mass Damper System-TMD
4
作者 Zhang Yaoting Lei Ping’an Liu Zaihua Lin Ning Department of Civil Engineering, Huazhong University of Science and Technology , Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第4期312-316,共5页
Based on the principle of tuned mass damper (TMD). the method of using laminated rubber bearing (LRB) to connect TMD with structure is discussed in this paper. This is a new type of TMD system-suspended structure. To ... Based on the principle of tuned mass damper (TMD). the method of using laminated rubber bearing (LRB) to connect TMD with structure is discussed in this paper. This is a new type of TMD system-suspended structure. To test the function of quake-reduction and the possibility of application, this paper explores the suspended top floor through shaking table test. In the model test, an electro-hydraulic shaking table was used. The main structure model was a four-story steel frame structure. The block to combat the structural quake was a concrete block. LRB was used to connect the block to the main structure. In order to analyze the efficiency of TMD, the fundamental frequencies of the main structure and block of TMD were measured separately first. Then. the frequencies of the main structure with the block and without the block were compared respectively under sine and imitative quake waves. The test shows that this new-typeTMD system is effective in combating the structural quake often reducing the acceleration of the top floor by more than 25 %. Because of the easy availability of the method, it is endowed with practical feasibility. 展开更多
关键词 suspended top floor tuned mass damper laminated rubber bearing shaking table test.
下载PDF
Location optimization for the tuned mass damper system on a long-span floor
5
作者 黄孟雅 ZHANG Zhi-qiang LAN Yu-min 《Journal of Chongqing University》 CAS 2017年第1期11-24,共14页
The L4 roof of Beijing Olympic International Conference Center is a long-span floor with a tuned mass damper system. The locations of dampers in the layout are not optimal theoretically. This paper is about the locati... The L4 roof of Beijing Olympic International Conference Center is a long-span floor with a tuned mass damper system. The locations of dampers in the layout are not optimal theoretically. This paper is about the location optimization of the 74 sets of dampers on the floor. The main content includes the establishment of a 2D dot-matrix model for the structure, the optimal location combination searched by a genetic algorithm, and the optimal results for five working conditions by calculating the total weight. 展开更多
关键词 long-span floor tuned mass damper location optimization
下载PDF
Study on Vibration Characteristics of Stay Cable-Nonlinear Viscous Damper System
6
作者 Xiaolong Li Kai Zhao 《Open Journal of Civil Engineering》 2022年第2期153-168,共16页
Tension cables are easily prone to generating varied vibrations under the action of external loads, which adversely affects the safety of bridges. Therefore, it is necessary to take effective measures to suppress the ... Tension cables are easily prone to generating varied vibrations under the action of external loads, which adversely affects the safety of bridges. Therefore, it is necessary to take effective measures to suppress the vibrations of tension cables. Cable end dampers are widely used in vibration reduction for cable-stayed bridges due to their convenient installation and low costs. However, the previous studies on the tension cable-viscous damper systems mostly adopt the linear method, and the weakening effect of the flexibility of mounting brackets on the damper vibration reduction is not sufficiently taken into account. Therefore, this paper adopts the improved Kelvin model to conduct the derivation, solution, and parametric analysis of vibration equations for the stay cable-nonlinear viscous damper systems. The results of parametric analysis show that the maximum modal damping ratio that can be obtained by cables and the corresponding optimal damping coefficient of dampers are correlated with the damping nonlinear coefficient α, stiffness nonlinear coefficient β, vibration order n, installation position a/L, and stiffness coefficient μ, etc.;among them, n damping nonlinear coefficient α and stiffness nonlinear coefficient β are the key parameters that affect the parameter design of dampers, where damping nonlinear coefficient α mainly controls the optimal damping coefficient and stiffness nonlinear coefficient β mainly controls the maximum damping ratio. Based on the parametric analysis, the design principles of dampers and value requirements of key parameters under different vibration suppression objectives are presented. 展开更多
关键词 Stay Cable VIBRATION Nonlinear Viscous damper damper Design Method Parametric Analysis
下载PDF
基于Damper的方向盘抖动问题优化设计
7
作者 葛峰 高中扩 +1 位作者 钱勇 王小飞 《汽车维修技师》 2024年第18期115-115,共1页
方向盘是顾客使用频次较高的零部件,受发动机等振源影响,在某些工况下方向盘会出现抖动等让顾客感到不适的问题,本文浅析了某车型方向盘高速抖动的原因,在现有方向盘结构上优化设计,增加Damper吸振器,有效解决了方向盘抖动问题,提升了... 方向盘是顾客使用频次较高的零部件,受发动机等振源影响,在某些工况下方向盘会出现抖动等让顾客感到不适的问题,本文浅析了某车型方向盘高速抖动的原因,在现有方向盘结构上优化设计,增加Damper吸振器,有效解决了方向盘抖动问题,提升了顾客舒适性。 展开更多
关键词 方向盘 抖动 damper吸振器 舒适性
下载PDF
Seismic control of multi-degrees-of-freedom structures by vertical mass isolation method using MR dampers
8
作者 Mohamad Shahrokh Abdi Masoud Nekooei Mohammad-Ali Jafari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期503-510,共8页
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc... Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively. 展开更多
关键词 seismic control vertical mass isolation base shear magnetorheological damper semi-active control
下载PDF
Theoretical and Experimental Study on the Performance of Hermetic Diaphragm Squeeze Film Dampers for Gas-Lubricated Bearings
9
作者 Jianwei Wang Haoxi Zhang +3 位作者 Shaocun Han Hang Li Peng Wang Kai Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期151-169,共19页
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing... Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development. 展开更多
关键词 Hermetic diaphragm squeeze film damper COMPRESSIBILITY Dynamic model Experimental studies
下载PDF
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
10
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
11
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
Parameters Optimization and Performance Evaluation of the Tuned Inerter Damper for the Seismic Protection of Adjacent Building Structures
12
作者 Xiaofang Kang Jian Wu +1 位作者 Xinqi Wang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期551-593,共43页
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ... In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes. 展开更多
关键词 Adjacent buildings tuned inerter damper(TID) H2 norm optimization vibration control energy harvesting
下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
13
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor Stochastic sampling Dynamic dampers Sampled-data control Multi-objective control
下载PDF
Rotational Friction Damper’s Performance for Controlling Seismic Response of High Speed Railway Bridge-Track System 被引量:3
14
作者 Wei Guo Chen Zeng +3 位作者 Hongye Gou Yao Hu Hengchao Xu Longlong Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期491-515,共25页
CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bri... CRTS-II slab ballastless track on bridge is a unique system in China high speed railway.The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure.The bridge system and CRTS-II track system form a complex nonlinear system.To investigate the seismic response of high speed railway(HSR)simply supported bridge-track system,nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established.By seismic analysis,it is found that shear alveolar in CRTS-II track system is more prone to be damaged than bridge components,such as piers,girders and bearings.The result shows that the inconsistent displacement of bridge girders is the main cause of the CRTS-II track system’s damage.Then the rotational friction damper(RFD)is adopted,which utilizes the device’s rotation and friction to dissipate seismic energy.The hysteretic behavior of RFD is studied by numerical and experimental methods.Results prove that RFD can provide good hysteretic energy dissipation ability with stable performance.Furthermore,the analysis of RFD’s influence on seismic response of HSR bridge-track system shows that RFD with larger sliding force is more effective in controlling excessive inconsistent displacement where RFD is installed,though response of other bridge spans could slightly deteriorated. 展开更多
关键词 ROTATIONAL friction damper high speed railway simply supported bridge-track system PIERS of different height CRTS-II TRACK system seismic response control
下载PDF
Research on the dynamic performance of ship isolator system that use magnetorheological dampers 被引量:3
15
作者 DENG Zhong-chao YAO Xiong-liang +3 位作者 ZHANG Da-gang 邓忠超 姚熊亮 张大刚 《Journal of Marine Science and Application》 2009年第4期291-297,共7页
Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a n... Isolator systems on ships should ideally be able to simultaneously reduce low frequency vibration response and high frequency shock response. Conventional isolator systems are unable to do so To solve the problem, a new style isolator system was created. This isolator system consists of a steel coil spring component and a magnetorheological (MR) damper component working in parallel. Experiments on this isolator system were carried out, including tests of vibration reduction and shock resistance. The vibration load frequencies were set from 1-15 Hz, and force amplitudes from 2.94-11.76kN. The maximum shock input acceleration was 20 g, and impulse width was lores. Both the vibration and shock loads were applied using MTS Systems Corporation's hydraulic actuators. The experimental results indicated that the isolator system performs well on system vibration response, with resonance humps of the vibration response obviously reduced after using the MR damper. For the shock experiment, the attenuation of shock response was much faster with increased MR damping. The MR damper's effect on shock moments was very different from its performance in vibration mode. The correlation between MR force and control current was not as evident as it was during vibration loads. 展开更多
关键词 magnetorheological fluid damper vibration reduction shock resistance ISOLATOR
下载PDF
Development and Control of a Magnetorheological Damper‑Based Brake Pedal Simulator for Vehicle Brake‑by‑Wire Systems 被引量:2
16
作者 Daoming Wang Biao Wang +2 位作者 Bin Zi Xianxu Bai Wuwei Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期390-402,共13页
Recent developments have demonstrated that the brake pedal simulator(BPS)is becoming an indispensable apparatus for the break-by-wire systems in future electric vehicles.Its main function is to provide the driver with... Recent developments have demonstrated that the brake pedal simulator(BPS)is becoming an indispensable apparatus for the break-by-wire systems in future electric vehicles.Its main function is to provide the driver with a comfortable pedal feel to improve braking safety and comfort.This paper presents the development and control of an adjustable BPS,using a disk-type magnetorheological(MR)damper as the passive braking reaction generator to simulate the traditional pedal feel.A detailed description of the mechanical design of the MR damper-based BSP(MRDBBPS)is presented in this paper.Several basic performance experiments on the MRDBBPS prototype are conducted.A returnto-zero(RTZ)algorithm is proposed to avoid hysteresis and improve the repeatability of the pedal force.In addition,an RTZ algorithm-based real-time current-tracking controller(RTZRC)is designed in consideration of the response lag of the coil circuit.Finally,an experimental system is established by integrating the MRDBBPS prototype into a selfdeveloped automotive MR braking test bench(AMRBTB),and several control and braking experiments are performed.This research proposes a RTZRC control algorithm which can significantly increase the tracking accuracy of the brake pedal characteristic curve,particularly at a high pedal velocity.Additionally,the designed MRDBBPS prototype can achieve an effective and favorable control of the AMRBTB with a good repeatability. 展开更多
关键词 Brake pedal simulator Magnetorheological damper Return-to-zero algorithm Real-time current-tracking control Experimental evaluation
下载PDF
Experimental study on vibration suppression in a rotor system under base excitation using an integral squeeze film damper 被引量:4
17
作者 Yan Wei He Lidong +2 位作者 Zhu Gang Wang Shengli Deng Zhe 《High Technology Letters》 EI CAS 2020年第4期349-359,共11页
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ... Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces. 展开更多
关键词 Jeffcott rotor dynamic characteristics base excitation integral squeeze film damper(ISFD) vibration suppression
下载PDF
Research on a Rigid Rotor-Sliding Bearing System with a Squeeze Film Damper 被引量:2
18
作者 LUYong-zhong LIAODao-xun 《Journal of Shanghai University(English Edition)》 CAS 2001年第3期224-229,共6页
In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid... In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid momentum and mass continuity, the distribution pressure function is derived by taking oil film inertia force into consideration. Damping force, clearance excitation force, interference force of different frequencies and static load are also considered in the model. Finally, the governing equations of the stability and bifurcation behaviors of the system are solved by Floquet theory. Simulation of dynamic model shows that the rigid rotor sliding bearing system can maintain stability and exhibit a Hopf bifurcation phenomenon in a certain range. 展开更多
关键词 squeeze film damper(SFD) sliding bearing rigid rotor STABILITY
下载PDF
Electrorheological Damper and Its Application for Semi-Active Suspension System 被引量:1
19
作者 赵霞 张永发 《Journal of Beijing Institute of Technology》 EI CAS 2007年第1期9-12,共4页
A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force ... A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law. 展开更多
关键词 dectrorheological(ER) fluid ER damper suspension system semi-active control skyhook control
下载PDF
Optimizing control of a two-span rotor system with magnetorheological fluid dampers 被引量:1
20
作者 邢健 何立东 +1 位作者 王锎 黄秀金 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期558-565,共8页
A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to a... A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled ( first critical speed region 37% , second critical speed region 42% ). To reflect advantages of optimi- zing strategy presented and validate the intelligent optimization control technology, detailed experi- ments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration. 展开更多
关键词 magnetorheological fluid damper two-span rotor Hooke and Jeeves optimizing con-trol vibration reduction
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部