期刊文献+
共找到236,134篇文章
< 1 2 250 >
每页显示 20 50 100
Damping properties and mechanism of aluminum matrix composites reinforced with glass cenospheres
1
作者 Kai SUN Lin WANG +5 位作者 Hang SU Jia-yi GENG Qiang ZHANG Bo MENG Zeng-yan WEI Gao-hui WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2743-2755,共13页
The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were ... The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites. 展开更多
关键词 glass cenospheres Al matrix composites MICROSTRUCTURE low-frequency damping properties
下载PDF
Microstructure,Mechanical Properties and Damping of SiC/Mg97Zn1Y2 Composites
2
作者 WAN Diqing TANG Hao +4 位作者 WANG Houbin WANG Yu YANG Fan SUN Yumeng WANG Yongyong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1580-1585,共6页
SiC particles were added to the Mg97Zn1Y2 alloy to improve its mechanical properties and damping properties.The microstructure,mechanical properties,and strain amplitude dependence of high-damping and high-strength Si... SiC particles were added to the Mg97Zn1Y2 alloy to improve its mechanical properties and damping properties.The microstructure,mechanical properties,and strain amplitude dependence of high-damping and high-strength SiC/Mg97Zn1Y2 magnesium matrix composites were analyzed.The strain amplitude-dependent damping of SiC/Mg97Zn1Y2 composites and the effect of SiC on this property were discussed herein.In anelastic damping,the strain amplitude-dependent damping curves of the composites were mainly divided into two sections,dominated by the G-L model.When the strain amplitude reaches a certain value,the dislocation motion inside the matrix becomes complicated.Moreover,the damping of the material could not be explained using the G-L model,and a new damping model related to microplastic deformation was proposed.In the anelastic damping stage,with the increase in the amount of the added SiC particles,the damping performance first increases and then decreases.Moreover,the damping value of the composite material is larger than that of the matrix alloy.In the microplastic deformation stage,the damping properties of the composites and matrix alloys considerably increase with the strain amplitude. 展开更多
关键词 high damping high strength magnesium matrix composites strain amplitude
下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
3
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
下载PDF
Damping capacity of BaTiO_3/Al composites fabricated by hot extrusion 被引量:1
4
作者 范根莲 李志强 张荻 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2512-2516,共5页
To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy me... To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy method and hot extrusion. The damping properties of BaTiO3 ceramic, Al matrix and BaTiO3/Al composites were examined by dynamic mechanical analysis in the temperature range from 273 K to 573 K. The results show that although BaTiO3 exhibits high damping (tan δ=0.12) below 400 K, the damping capacity of 10%BaTiO3/Al (mass fraction) composites below 400 K is not increased as compared to the Al matrix. On the other hand, the damping capacity above 450 K is greatly enhanced due to the motion of dislocations at the interfaces between ceramic particles and Al matrix. The failure of exerting the intrinsic damping of BaTiO3 particles in the composites is attributed to the poor interface bonding between the particles and the matrix. The tensile strength of the composite is 42% higher than that of the Al matrix, which indicates the possibility of obtaining high strength and high damping composites via interface improvement and the addition of high volume fraction of large grain BaTiO3 particles. 展开更多
关键词 high damping materials metal matrix composites barium titanate mechanical properties INTERFACE
下载PDF
Theoretical analysis of the conversion from electrical into thermal energy in piezoelectric-conductive damping composites
5
作者 Wei WEI Cheng HUANG Zuowan ZHOU 《Journal of Modern Transportation》 2011年第2期143-146,共4页
Based on the principles of electrical conduction and transformation, a model was put forward for the electrical conversion of piezoelectric damping composites, and a related formula was derived. The results show that ... Based on the principles of electrical conduction and transformation, a model was put forward for the electrical conversion of piezoelectric damping composites, and a related formula was derived. The results show that the best effect of conversion can be achieved by reducing the imaginary part of the impedance and matching the frequency. The optimal damping effect at a certain frequency requires resistance of conductive phase (R) satisfying the condition of R=I/(ωC), but this condition may cause the damping effect at other frequencies to deviate away from the optimum condition. It is suggested that in order to make the damping effect more efficient and objective, frequency matching should be considered during the design of piezoelectric damping composites. 展开更多
关键词 electrical analysis PIEZOELECTRIC damping composites.
下载PDF
Influence of B4C particle size on microstructure and damping capacities of(B_(4)C+Ti)/Mg composites 被引量:5
6
作者 YAO Yan-tao CHEN Li-qing WANG Wen-guang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期648-656,共9页
To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstruct... To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstructure,produced phases and damping capacities of the composites prepared with different particle size of B4C were characterized and analyzed.The results show that the reaction between B4C and Ti tends to be more complete when finer B_(4)C particle was used to prepare the composites.But the microstructure of the as-prepared composites is more homogenous when B4C and Ti have similar particle size.The strain-dependent damping capacities of(B_(4)C+Ti)/Mg composites improve gradually with the increase of strain amplitude,and composites prepared with coarser B4C particles tend to have higher damping capacities.The temperature-dependent damping capacities improve with increasing the measuring temperatures,and the kind of damping capacities of the composites prepared with 5mm B4C are inferior to those of coarser particles.The dominant damping mechanism for the strain-damping capacity is dislocation damping and plastic zone damping,while that for the temperature-damping capacity is interface damping or grain boundary damping. 展开更多
关键词 Mg-matrix composites in situ reactive infiltration particle size MICROSTRUCTURE damping capacity mechanism
下载PDF
Damping properties of fly ash/epoxy composites 被引量:2
7
作者 Jian Gu Gaohui Wu Xiao Zhao 《Journal of University of Science and Technology Beijing》 CSCD 2008年第4期509-513,共5页
An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structur... An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structure characteristic (porosity), and filler/matrix interface friction to the high vibration damping capacity of such composites. The damping properties of the composites were investigated in the temperature range of-40 to 150℃ and in the frequency range of 10 to 800 Hz by using a tension-compression mode. The results indicate that the peak value of damping loss factor (tan3) for the fly ash/epoxy composites can reach 0.70-0.90 in test specification, and the attenuation of damping loss factor is inconspicuous with increasing frequency. In addition, scanning electron microscope (SEM) was used to observe the morphology of the fly ash as well as its distribution in the matrix, which will help to analyze the effect of fly ash on the damping properties of the fly ash/epoxy composites. 展开更多
关键词 composites EPOXY fly ash damping property loss factor
下载PDF
Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression 被引量:2
8
作者 Mahmoud Ebrahimi Li Zhang +2 位作者 Qudong Wang Hao Zhou Wenzhen Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1608-1617,共10页
This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC pro... This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC process significantly affects the damping performance of the composite due to alterations in the density of dislocations and grain boundaries in the matrix alloy.Although there would be dynamic precipitation of the Mg17Al12 phase during processing which increases the phase interface and limits the mobility of dislocations and grain boundaries.The results also showed that the damping capacity of 1%SiC_(np)/AZ91D composite continuously decreases with adding CEC pass number and it consistently increases with rising the applied temperature.Considering the first derivative of the tanδ-T curve,the dominant damping mechanism based on test temperature can be divided into three regions.These three regions are as follows(i)dislocation vibration of the weak pinning points(≤T_(cr)),(ii)dislocation vibration of the strong pinning points(T_(cr)∼T_(V)),and(iii)grain boundary/interface sliding(≥T_(V)) 展开更多
关键词 Metal matrix composite SiC nanoparticles Severe plastic deformation Temperature-dependent damping curves damping mechanism
下载PDF
Effects of Fiber Volume Fraction on Damping Properties of Three-Dimensional and Five-Directional Braided Composites 被引量:1
9
作者 高岩 李嘉禄 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期458-465,共8页
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod... The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions. 展开更多
关键词 damping properties experimental modal analysis three-dimensional and five-directional(3D-5Dir) braided composites free vibration characters fiber volume fraction
下载PDF
Damping Properties of Piezoelectric and Electrical Conductive of BaTiO_3/VGCF/CPE Composites: Effect of Carbon Fiber 被引量:3
10
作者 晏雄 张慧萍 住田雅夫 《Journal of Donghua University(English Edition)》 EI CAS 2001年第3期11-13,共3页
A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The resul... A new damping composite of CPE/BaTiO3/VGCF has been developed on the basis of the piezo- effect and conductivity mechanism. The conductivity of composites varied with the VGCF content are tested and analyzed.The results indicate that the conductivity of composites grows up slowly as the VGCF content is in the range of 10%-20%. It is very useful for industrial application to control the conductivity of composites by adjusting the VGCF content. In addition, at the range of - 50 - 120°C,the dependence of loss factor on the VGCF content varied with the temperature are tested and analyzed by dynamic mechanical and dielectric behavior measurement of the composites, and expected results are obtained. 展开更多
关键词 Chlorinating polyethylene (CPE) BARIUM TITANATE ( BaTiO3 ) Carbon fiber Dynamic mechanical behavior Dielectric behavior Electric conductivity PERCOLATION threshold damping material.
下载PDF
Chlorinated butyl rubber/two-step modified montmorillonite nanocomposites:Mechanical and damping properties 被引量:4
11
作者 Keya Tang Jincheng Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期437-449,共13页
Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlay... Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlayer distance, and thermal behavior of the samples obtained were characterized. The modified OMMT was then added to chlorinated butyl rubber(CIIR) by mechanical blending, and a composite material with excellent damping properties was obtained. The mechanical experiment results of CIIR nanocomposites showed that the addition of OMMT improved their tensile strength, hardness,and stress relaxation rate. Compared with pure CIIR, when the content of OMMT was 5 phr(part per hundred of rubber), the tensile strength of the nanocomposite was increased by 677% and the elongation at break was also increased by 105.4%. The enhancement of this performance was mainly due to the dispersion of the nanosheets in CIIR rubber and the chemical interaction between the organoclay and the polymer matrix, which was confirmed by morphology and spectral analysis. OMMT also endowed a positive effect on the damping properties of CIIR nanocomposites. After adding 5 phr of OMMT, the nanocomposite owned the best damping performance, and the damping factor, tanδmax, was 37.9% higher than that of pure CIIR. Therefore, the good damping and mechanical properties of these CIIR nanocomposites provided some novel and promising methods for preparing high-damping rubber in a wide temperature range. 展开更多
关键词 MONTMORILLONITE NANOSTRUCTURE Chlorinated butyl rubber Polymer processing composites
下载PDF
Damping characterization of magnesium matrix composites prepared by in-situ synthesis technique
12
作者 张修庆 廖利华 +1 位作者 马乃恒 王浩伟 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期120-123,共4页
Magnesium alloy reinforced with 8% TiC(mass fraction) is in-situ synthesized using remelting and dilution technique. Damping capacity of AZ91 alloy and magnesium matrix composites was examined using Mark IV dynamic me... Magnesium alloy reinforced with 8% TiC(mass fraction) is in-situ synthesized using remelting and dilution technique. Damping capacity of AZ91 alloy and magnesium matrix composites was examined using Mark IV dynamic mechanical thermal analyzer. The results reveal that the damping capacity of materials is independent of frequency, but dependent on strain. Damping capacity of materials increase when testing strain enhances, and there is strain peak at damping-strain curve of materials. There are two temperature peaks at damping-temperature curve of magnesium matrix composites under 140℃ and 250℃ respectively. The damping mechanism is explained by dislocation motion, interface slip and grain boundary slip. 展开更多
关键词 MAGNESIUM MATRIX composites damping CHARACTERIZATION damping mechanism
下载PDF
Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties 被引量:1
13
作者 Jiacheng Chen Jincheng Wang +2 位作者 Shuhong Li Kailing Xiang Shiqiang Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期211-221,共11页
Due to the special viscoelastic property, traditional rubber with high performance has been widely used in human life and production. However, it is challenging to improve the damping property without sacrificing the ... Due to the special viscoelastic property, traditional rubber with high performance has been widely used in human life and production. However, it is challenging to improve the damping property without sacrificing the extensibility. In this work, a novel type of second-generation polyurethane dendrimer terminated with pyridine(G2-Py) was synthesized by using thiolactone chemistry and subsequently complexed with Zn ions. The structure and morphology of G2-Py were characterized. G2-Py-Zn2+was then mixed with chlorinated butyl rubber(CIIR) by a two-roll mill. A series of CIIR/G2-Py-Zn2+elastomers were obtained through vulcanization. CIIR/G2-Py-Zn2+elastomers could achieve high stretchability(a strain of ~1035%), high mechanical strength(a tensile stress of 7.64 MPa). This was benefitted from the friction between G2-Py and CIIR as well as variety of non-covalent bonds provided by G2-Py-Zn2+,which can dissipate energy to further improve the strength and extensibility. The coordination of Zn2+-pyridine was confirmed by Fourier transform infrared spectroscopy, stress relaxation and cycle tensile test. To further investigate the morphology and damping properties of the elastomers, scanning electron microscopy and dynamic mechanical analysis were performed. CIIR-5 showed the best damping performance with higher tan δ_(max) and wider effective damping temperatures. Therefore, this dendrimer modification technology provides wider applications for CIIR elastomers in daily life. 展开更多
关键词 Coordination bonds Hydrogen bonds Polyurethane dendrimer NANOSTRUCTURE Polymers composites
下载PDF
Microstructural Dependence of Damping Behaviour of Eutectoid Zn-Al Based Alloy (ZA27)──Discussion of "Damping Behaviour and Mechanism of Graphite Particulate Reinforced Metal Matrix Composites
14
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第2期178-180,共3页
关键词 Zn ZA27 Graphite Al damping Behaviour and Mechanism of Graphite Particulate Reinforced Metal Matrix composites Microstructural Dependence of damping Behaviour of Eutectoid Zn-Al Based Alloy Discussion of
下载PDF
Microstructure and damping behavior of SiC_p/Gr/2024Al metal matrix composites by squeeze casting technology 被引量:1
15
作者 冷金凤 武高辉 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1640-1644,共5页
SiCp/Gr/2024Al metal matrix composites were processed by squeeze casting technology. The microstructure of composites was observed by SEM and TEM, and the effects of graphite particulates and SiC particulates on the d... SiCp/Gr/2024Al metal matrix composites were processed by squeeze casting technology. The microstructure of composites was observed by SEM and TEM, and the effects of graphite particulates and SiC particulates on the damping behaviors of composites were also investigated. The results show that the microstructure of composites was dense and homogeneous, without any interfacial reactivity among reinforcement/matrix interfaces. Compared with the damping capacity of 2024A1, the damping capacity of composites was enhanced significantly by addition of SiC or graphite particulates. The main damping mechanisms of SiCp/Al composites were ascribed to the dislocation damping, and those of SiCp/Gr/2024Al were attributed to the intrinsic damping and interface damping. 展开更多
关键词 微观结构 金属化合物 阻尼 金属铸造
下载PDF
Damping capacity of in situ TiC_p/2024 composites
16
作者 马明臻 张二林 +3 位作者 曾松岩 周彼德 廖建伟 桂满昌 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期408-410,共3页
The internal friction and the damping behaviors of in situ TiC p/2024 composites have been investigated in comparison with those of 2024 matrix alloy. The results showed that the damping properties of the TiC p/2024 c... The internal friction and the damping behaviors of in situ TiC p/2024 composites have been investigated in comparison with those of 2024 matrix alloy. The results showed that the damping properties of the TiC p/2024 composites are superior to those of the matrix alloy and increase with increasing temperature and volume fraction of TiC. It was found that the damping properties were sensitive to frequency and temperature, and the dislocation damping and interface damping were the main factors which influence the damping behaviors of the composites. When the temperature was lower than 200 ℃, the dislocation damping was the main factor; when the temperature was higher than 200 ℃, the interface and boundary damping was the main factor. 展开更多
关键词 TIC p/2024 composites damping capacity dislocations INTERFACES
下载PDF
Damping capacity of amorphous carbon fiber/aluminum matrix composites at room temperature
17
作者 LI Aibin,WANG Hongmei,LI Shasha,and ZHENG Peiqi School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期115-119,共5页
The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary d... The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary damping mechanism.Meanwhile,the dislocation damping exhibits dynamic hysteresis at low strain amplitudes and static hysteresis at high strain amplitudes.Moreover,the damping capacity is rather sensitive to the volume fraction.Compared to unreinforced aluminum alloy,the additions of amorphous carbon fibers into the aluminum matrix can improve damping capacity below the volume fraction of 30%,whereas worsen above the volume fraction of 40%. 展开更多
关键词 carbon fiber aluminum matrix composite damping capacity volume fraction
下载PDF
Mechanical and damping performances of TPMS lattice metamaterials fabricated by laser powder bed fusion 被引量:1
18
作者 Yan-peng Wei Huai-qian Li +7 位作者 Jing-jing Han Ying-chun Ma Hao-ran Zhou Jing-chang Cheng Jian Shi Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 SCIE EI CAS CSCD 2024年第4期327-333,共7页
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it... Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity. 展开更多
关键词 lattice metamaterials TPMS energy absorption damping laser powder bed fusion
下载PDF
Ti_(3)C_(2)T_(x) MXene/carbon composites for advanced supercapacitors:Synthesis,progress,and perspectives 被引量:2
19
作者 Yanqing Cai Xinggang Chen +4 位作者 Ying Xu Yalin Zhang Huijun Liu Hongjuan Zhang Jing Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期113-142,共30页
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi... MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs. 展开更多
关键词 electrochemical performance MXene/carbon composites SUPERCAPACITORS
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
20
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE damping properties.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部