期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bionic Design and Simulation Analysis of Energy⁃Efficient and Vibration⁃Damping Walking Mechanism
1
作者 Rui Zhang Hao Pang +4 位作者 Yuan He Dianlei Han Lige Wen Lei Jiang Jianqiao Li 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第4期16-24,共9页
African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping desi... African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping design of the leg mechanism of the legged robot,the principle of engineering bionics was applied.According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb,combined with the proportion and size of the structure of the ostrich hindlimb,the bionic rigid⁃flexible composite legged robot single⁃leg structure was designed.The locomotion of the bionic mechanical leg was simulated by means of ADAMS.Through the motion simulation analysis,the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied,and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm,and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg.Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%. 展开更多
关键词 bionics engineering bionic mechanical leg passive rebound characteristic rigid⁃flexible composite structure energy⁃efficient and vibration⁃damping
下载PDF
Optimal Control Virtual Inertia of Optical Storage Microgrid Based on Improved Sailfish Algorithm 被引量:1
2
作者 LIAO Hongfei ZENG Guohui +3 位作者 HUANG Bo MA Chi CHEN Gong ZHAO Jinbin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2022年第3期218-230,共13页
The optical storage microgrid system composed of power electronic converters is a small inertia system.Load switching and power supply intermittent will affect the stability of the direct current(DC)bus voltage.Aiming... The optical storage microgrid system composed of power electronic converters is a small inertia system.Load switching and power supply intermittent will affect the stability of the direct current(DC)bus voltage.Aiming at this problem,a virtual inertia optimal control strategy applied to optical storage microgrid is proposed.Firstly,a small signal model of the system is established to theoretically analyze the influence of virtual inertia and damping coefficient on DC bus voltage and to obtain the constraint range of virtual inertia and damping coefficient;Secondly,aiming at the defect that the Sailfish optimization algorithm is easy to premature maturity,a Sailfish optimization algorithm based on the leak-proof net and the cross-mutation propagation mechanism is proposed;Finally,the virtual inertia and damping coefficient of the system are optimized by the improved Sailfish algorithm to obtain the best control parameters.The simulation results in Matlab/Simulink show that the virtual inertia control optimized by the improved Sailfish algorithm improves the system inertia as well as the dynamic response and robustness of the DC bus voltage. 展开更多
关键词 optical storage microgrid virtual inertia damping co‐efficient improved Sailfish optimization algorithm optimal control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部