Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the th...Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the thermal noise, and which one mainly limits the torsion pendulum in low frequency is difficult to be verified by experiment. Based on the conventional method of fast Fourier transform, we propose a developed method to determine the thermal noise limit and then obtain the precise power spectrum density of the pendulum motion signal. The experiment result verifies that the thermal noise is mainly contributed by the internal damping in the fiber in the low frequency torsion pendulum experiment with a high vacuum. Quantitative data analysis shows that the basic noise level in the experiment is about one to two times of the theoretical value of internal damping thermal noise.展开更多
We investigate entanglement of assistance without and with decoherence using a local non-Hermitian operation, i.e.,parity–time(PT) symmetric operation. First we give the explicit expressions of entanglement of assist...We investigate entanglement of assistance without and with decoherence using a local non-Hermitian operation, i.e.,parity–time(PT) symmetric operation. First we give the explicit expressions of entanglement of assistance for a general W-like state of a three-qubit system under a local parity–time symmetric operation. Then for a famous W state without decoherence, we find that entanglement of assistance shared by two parties can be obviously enhanced with the assistance of the third party by a local parity–time symmetric operation. For the decoherence case, we provide two schemes to show the effects of local parity–time symmetric operation on improvement of entanglement of assistance against amplitude damping noise. We find that for the larger amplitude damping case the scheme of PT symmetric operation performed on one of two parties with the influence of noise is superior to that of PT symmetric operation performed on the third party without the influence of noise in suppressing amplitude damping noise. However, for the smaller amplitude damping case the opposite result is given. The obtained results imply that the local PT symmetric operation method may have potential applications in quantum decoherence control.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575160 and 11275075)the Natural Science Foundation of Key Projects of Hubei Province,China(Grant No.2013CFA045)
文摘Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the thermal noise, and which one mainly limits the torsion pendulum in low frequency is difficult to be verified by experiment. Based on the conventional method of fast Fourier transform, we propose a developed method to determine the thermal noise limit and then obtain the precise power spectrum density of the pendulum motion signal. The experiment result verifies that the thermal noise is mainly contributed by the internal damping in the fiber in the low frequency torsion pendulum experiment with a high vacuum. Quantitative data analysis shows that the basic noise level in the experiment is about one to two times of the theoretical value of internal damping thermal noise.
基金Project supported by China Postdoctoral Science Foundation(Grant No.2017M622582)the Natural Science Foundation of Hunan Province of China(Grant No.2015JJ3092)+2 种基金the Research Foundation of Education Bureau of Hunan Province of China(Grant No.16B177)Applied Characteristic Disciplines in Hunan Province-Electronic Science and Technology of ChinaHunan-Provincial Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology
文摘We investigate entanglement of assistance without and with decoherence using a local non-Hermitian operation, i.e.,parity–time(PT) symmetric operation. First we give the explicit expressions of entanglement of assistance for a general W-like state of a three-qubit system under a local parity–time symmetric operation. Then for a famous W state without decoherence, we find that entanglement of assistance shared by two parties can be obviously enhanced with the assistance of the third party by a local parity–time symmetric operation. For the decoherence case, we provide two schemes to show the effects of local parity–time symmetric operation on improvement of entanglement of assistance against amplitude damping noise. We find that for the larger amplitude damping case the scheme of PT symmetric operation performed on one of two parties with the influence of noise is superior to that of PT symmetric operation performed on the third party without the influence of noise in suppressing amplitude damping noise. However, for the smaller amplitude damping case the opposite result is given. The obtained results imply that the local PT symmetric operation method may have potential applications in quantum decoherence control.