High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemic...High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.展开更多
Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tiss...Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say ~50 μm. This X-ray optics comprises a Bragg asymmetric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel position. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ= 0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not. Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis. Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown.展开更多
As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy gro...As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy ground or a white wall), resulting in underestimation of the transmittance of some local scenes. To address that problem, we propose an image dehazing method by incorporating Markov random field(MRF) with the DCP. The DCP explicitly represents the input image observation in the MRF model obtained by the transmittance map. The key idea is that the sparsely distributed wrongly estimated transmittance can be corrected by properly characterizing the spatial dependencies between the neighboring pixels of the transmittances that are well estimated and those that are wrongly estimated. To that purpose, the energy function of the MRF model is designed. The estimation of the initial transmittance map is pixel-based using the DCP, and the segmentation on the transmittance map is employed to separate the foreground and background, thereby avoiding the block effect and artifacts at the depth discontinuity. Given the limited number of labels obtained by clustering, the smoothing term in the MRF model can properly smooth the transmittance map without an extra refinement filter. Experimental results obtained by using terrestrial and underwater images are given.展开更多
Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Expo...Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.展开更多
Real-time monitoring of reaction processes is helpful for understanding the reaction mechanisms. In this study we investigated the etching mechanism of gold nanopartides (AuNPs) by iodine on a single-nanopartide lev...Real-time monitoring of reaction processes is helpful for understanding the reaction mechanisms. In this study we investigated the etching mechanism of gold nanopartides (AuNPs) by iodine on a single-nanopartide level because AuNPs have become important nanoprobes with applications in sensing and bioimaging fields owing to their specific localized surface plasmon resonance (LSPR) properties. By using a scattered-light dark-field microscopic imaging (iDFM) technique, the in situ KI/I2-treated etching processes of various shapes of AuNPs, including nanospheres (AuNSs), nanorods (AuNRs), and nanotrigonal prisms (AuNTs), were monitored in real time. It was found that the scattered light of the different shapes of AuNPs exhibited noticeable color changes upon exposure to the etching solution. The scattering spectra during the etching process showed obvious blue-shifts with decreasing scattered intensity owing to the oxidation of Au atoms into [AuI2]-. Both finite-difference time-domain (FDTD) simulations and monitoring of morphological variations proved that the etching was a thermodynamic-dependent process through a chamfering mechanism coupled with layer-by-layer peeling, resulting in isotropic spheres with decreased particle sizes.展开更多
With the discovery and further understanding of topoisomerases, it becomes clear that the supercoiling of double stranded DNA plays an important role in DNA replication, RNA transcription and even in the control of ge...With the discovery and further understanding of topoisomerases, it becomes clear that the supercoiling of double stranded DNA plays an important role in DNA replication, RNA transcription and even in the control of gene expression. Although the small circular DNA can be separated by means of density gradient centrifugation or gel electrophoresis and展开更多
Ductal carcinoma in-situ (DCIS) has been visualized by 2D XDFI (X-ray dark-field imaging) and further by a 3D X-ray CT, and the data was acquired by the X-ray optics DEI (diffraction-enhanced imaging). A newly made al...Ductal carcinoma in-situ (DCIS) has been visualized by 2D XDFI (X-ray dark-field imaging) and further by a 3D X-ray CT, and the data was acquired by the X-ray optics DEI (diffraction-enhanced imaging). A newly made algorithm was used for CT. Data of 900 projections with interval of 0.2 degrees were used. Ductus lactiferi, microcalci-fication in a 3D form have been clearly visible. The spatial resolution available was approximately 30μm.展开更多
Acid phosphatase(ACP)is a ubiquitous phosphatase in living organisms.The abnormal variation of ACP is related to various diseases.Herein,we propose a colorimetric method based on CeO_(2)-modified gold core shell nanop...Acid phosphatase(ACP)is a ubiquitous phosphatase in living organisms.The abnormal variation of ACP is related to various diseases.Herein,we propose a colorimetric method based on CeO_(2)-modified gold core shell nanoparticles(Au@CeO_(2)NPs)to analyze ACP activity with high sensitivity and specificity.In this design,2-phospho-L-ascorbic acid trisodium salt(AAP)is dephosphorylated by ACP and produces reductive ascorbic acid(AA),which makes the CeO_(2)shell decomposition.A remarkable blue shift of localized surface plasmon resonance peak(LSPR,from yellow to green)along with the scattering intensity ratio changes from individual Au@CeO_(2)NPs are observed.ACP activity can be quantified by calculating the ratio changes of individual Au@CeO_(2)NPs.This assay reveals limit of detection(LOD)of 0.044 mU/mL and the linear range of 0.05–5.0 mU/mL,which are much lower than most of spectroscopic measurements in bulk solution.Furthermore,the recovery measurements in real samples are satisfactory and the capacity for practical application is demonstrated.As a consequence,Au@CeO_(2)NPs used in this assay will find new applications for the ultrasensitive detection of enzyme activity.展开更多
基金National Research Foundation(NRF)Singapore,under its NRF Fellowship(Grant No.NRFNRFF11-2019-0002).
文摘High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.
文摘Review of X-ray dark-field imaging under development is presented. Its goal is its application to clinical diagnosis of organs that have been invisible by the ordinary techniques. In order to clinically visualize tissues in detail one needs high contrast and high spatial resolution say ~50 μm. This X-ray optics comprises a Bragg asymmetric monochro-collimator and a Bragg case or a Laue case filter with capability of analyzing angle in a parallel position. Their diffraction index is 4,4,0 and the X-ray energy 35 keV (λ= 0.0354 nm). The filter has 0.6 mm thickness in the Bragg case or 1.075 mm or 2.15 mm thickness in the Laue case. Under this condition only the refracted X-rays from object can transmit through the filter while the beam that may receive absorption and/or phase change will not. Soft tissues at human joints thus taken show high contrast images so that the DFI is promising for clinical diagnosis. Preliminary X-ray absorption images of another clinical candidates of ear bones are also shown.
基金supported by the National Natural Science Foundation of China (No.61571407)。
文摘As one of the most simple and effective single image dehazing methods, the dark channel prior(DCP) algorithm has been widely applied. However, the algorithm does not work for pixels similar to airlight(e.g., snowy ground or a white wall), resulting in underestimation of the transmittance of some local scenes. To address that problem, we propose an image dehazing method by incorporating Markov random field(MRF) with the DCP. The DCP explicitly represents the input image observation in the MRF model obtained by the transmittance map. The key idea is that the sparsely distributed wrongly estimated transmittance can be corrected by properly characterizing the spatial dependencies between the neighboring pixels of the transmittances that are well estimated and those that are wrongly estimated. To that purpose, the energy function of the MRF model is designed. The estimation of the initial transmittance map is pixel-based using the DCP, and the segmentation on the transmittance map is employed to separate the foreground and background, thereby avoiding the block effect and artifacts at the depth discontinuity. Given the limited number of labels obtained by clustering, the smoothing term in the MRF model can properly smooth the transmittance map without an extra refinement filter. Experimental results obtained by using terrestrial and underwater images are given.
文摘Spring water but not double-distilled water was exposed, in darkness, to a temporally patterned weak magnetic field that has been shown to affect planarian behavior and slow the rate of cancer cell proliferation. Exposure to the magnetic field caused a reliable shift in the peak (longer) wave-length of ~10 nm for fluorescence emissions and a ~20% increase (~100 counts) in fluorescence intensity. Spectral analyses verified a shift of 5 and 10 nm, equivalent to ~1.5 × 10-20 J “periodicity” across the measured wavelengths, which could reflect a change in the an intrinsic energy as predicted by Del Giudice and Preparata and could correspond to two lengths of O-H bonds. Wrapping the water sample containers during exposure with copper foil, aluminum foil, or plastic altered these fluorescent profiles. The most conspicuous effect was the elimination of a ~280 nm peak in the UV-VIS emission spectra only for samples wrapped with copper foil but not aluminum or plastic. These results suggest that weak magnetic fields produce alterations in the water-ionic complexes sufficient to be reliably measured by spectrophotometry. Because the effect was most pronounced when the spring water was exposed in darkness and was not disturbed the role of thixotropic phenomena and Del Giudice entrapment of magnetic fields within coherent domains of Pollack virtual exclusion zones (EZ) may have set the conditions for subsequent release of the energy as photons.
基金This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 21535006).
文摘Real-time monitoring of reaction processes is helpful for understanding the reaction mechanisms. In this study we investigated the etching mechanism of gold nanopartides (AuNPs) by iodine on a single-nanopartide level because AuNPs have become important nanoprobes with applications in sensing and bioimaging fields owing to their specific localized surface plasmon resonance (LSPR) properties. By using a scattered-light dark-field microscopic imaging (iDFM) technique, the in situ KI/I2-treated etching processes of various shapes of AuNPs, including nanospheres (AuNSs), nanorods (AuNRs), and nanotrigonal prisms (AuNTs), were monitored in real time. It was found that the scattered light of the different shapes of AuNPs exhibited noticeable color changes upon exposure to the etching solution. The scattering spectra during the etching process showed obvious blue-shifts with decreasing scattered intensity owing to the oxidation of Au atoms into [AuI2]-. Both finite-difference time-domain (FDTD) simulations and monitoring of morphological variations proved that the etching was a thermodynamic-dependent process through a chamfering mechanism coupled with layer-by-layer peeling, resulting in isotropic spheres with decreased particle sizes.
文摘With the discovery and further understanding of topoisomerases, it becomes clear that the supercoiling of double stranded DNA plays an important role in DNA replication, RNA transcription and even in the control of gene expression. Although the small circular DNA can be separated by means of density gradient centrifugation or gel electrophoresis and
文摘Ductal carcinoma in-situ (DCIS) has been visualized by 2D XDFI (X-ray dark-field imaging) and further by a 3D X-ray CT, and the data was acquired by the X-ray optics DEI (diffraction-enhanced imaging). A newly made algorithm was used for CT. Data of 900 projections with interval of 0.2 degrees were used. Ductus lactiferi, microcalci-fication in a 3D form have been clearly visible. The spatial resolution available was approximately 30μm.
基金supported by the Natural Science Foundation of Hunan Province,China(No.2022JJ40266)the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University,China(No.2022A04).
文摘Acid phosphatase(ACP)is a ubiquitous phosphatase in living organisms.The abnormal variation of ACP is related to various diseases.Herein,we propose a colorimetric method based on CeO_(2)-modified gold core shell nanoparticles(Au@CeO_(2)NPs)to analyze ACP activity with high sensitivity and specificity.In this design,2-phospho-L-ascorbic acid trisodium salt(AAP)is dephosphorylated by ACP and produces reductive ascorbic acid(AA),which makes the CeO_(2)shell decomposition.A remarkable blue shift of localized surface plasmon resonance peak(LSPR,from yellow to green)along with the scattering intensity ratio changes from individual Au@CeO_(2)NPs are observed.ACP activity can be quantified by calculating the ratio changes of individual Au@CeO_(2)NPs.This assay reveals limit of detection(LOD)of 0.044 mU/mL and the linear range of 0.05–5.0 mU/mL,which are much lower than most of spectroscopic measurements in bulk solution.Furthermore,the recovery measurements in real samples are satisfactory and the capacity for practical application is demonstrated.As a consequence,Au@CeO_(2)NPs used in this assay will find new applications for the ultrasensitive detection of enzyme activity.