Half centuries of follow-up survey has enabled the architects and urban planners to design rationally by the aid of planning Nonetheless, limitation has occurred at planning because city has been changing its utility ...Half centuries of follow-up survey has enabled the architects and urban planners to design rationally by the aid of planning Nonetheless, limitation has occurred at planning because city has been changing its utility in accordance with its users' demand. In this paper, the authors proposed a method to analyze trait of users in market areas near stations by analyzing location based social network. After the datum collection from geotagged tweets, these GPS (global positioning system) datum were plotted to map attained from yahoo open location platform. Then the morphological analysis and terminology extraction system extracted the keywords and their scores. After calculating the distance from stations and users' GPS coordination, the authors extracted the array of keywords and corresponding scores in some station market area. Lastly, ratios of all users' scores and city's scores were calculated to examine the locality. Full combination of data collection, natural language processing and visualization enabled the authors to envisage distribution of collective background in city.展开更多
With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the lit...With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the literature revealed that most studies tend to use several performance criteria to evaluate the performance of competing forecasting models;however, models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria—A situation where one cannot make an informed decision as to which model performs best when taking all criteria into account. In order to overcome this methodological problem, Xu and Ouenniche [1] proposed a multidimensional framework based on an input-oriented radial super-efficiency Data Envelopment Analysis (DEA) model to rank order competing forecasting models of crude oil prices’ volatility. However, their approach suffers from a number of issues. In this paper, we overcome such issues by proposing an alternative framework.展开更多
文摘Half centuries of follow-up survey has enabled the architects and urban planners to design rationally by the aid of planning Nonetheless, limitation has occurred at planning because city has been changing its utility in accordance with its users' demand. In this paper, the authors proposed a method to analyze trait of users in market areas near stations by analyzing location based social network. After the datum collection from geotagged tweets, these GPS (global positioning system) datum were plotted to map attained from yahoo open location platform. Then the morphological analysis and terminology extraction system extracted the keywords and their scores. After calculating the distance from stations and users' GPS coordination, the authors extracted the array of keywords and corresponding scores in some station market area. Lastly, ratios of all users' scores and city's scores were calculated to examine the locality. Full combination of data collection, natural language processing and visualization enabled the authors to envisage distribution of collective background in city.
文摘With the increasing number of quantitative models available to forecast the volatility of crude oil prices, the assessment of the relative performance of competing models becomes a critical task. Our survey of the literature revealed that most studies tend to use several performance criteria to evaluate the performance of competing forecasting models;however, models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria—A situation where one cannot make an informed decision as to which model performs best when taking all criteria into account. In order to overcome this methodological problem, Xu and Ouenniche [1] proposed a multidimensional framework based on an input-oriented radial super-efficiency Data Envelopment Analysis (DEA) model to rank order competing forecasting models of crude oil prices’ volatility. However, their approach suffers from a number of issues. In this paper, we overcome such issues by proposing an alternative framework.