期刊文献+
共找到334,619篇文章
< 1 2 250 >
每页显示 20 50 100
A study on fast post-processing massive data of casting numerical simulation on personal computers 被引量:1
1
作者 Chen Tao Liao Dunming +1 位作者 Pang Shenyong Zhou Jianxin 《China Foundry》 SCIE CAS 2013年第5期321-324,共4页
When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive ... When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied. 展开更多
关键词 casting numerical simulation massive data fast post-processing
下载PDF
Scientific data products and the data pre-processing subsystem of the Chang'e-3 mission 被引量:1
2
作者 Xu Tan Jian-Jun Liu +7 位作者 Chun-Lai Li Jian-Qing Feng Xin Ren Fen-Fei Wang Wei Yan Wei Zuo Xiao-Qian Wang Zhou-Bin Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2014年第12期1682-1694,共13页
The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1... The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies. 展开更多
关键词 Moon: data products -- methods: data pre-processing -- space vehicles:instruments
下载PDF
Comparison of Results of Different GPS Post-processing Software
3
作者 Dapeng SHI 《Asian Agricultural Research》 2024年第6期33-35,共3页
In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data... In order to obtain high-precision GPS control point results and provide high-precision known points for various projects,this study uses a variety of mature GPS post-processing software to process the observation data of the GPS control network of Guanyinge Reservoir,and compares the results obtained by several kinds of software.According to the test results,the reasons for the accuracy differences between different software are analyzed,and the optimal results are obtained in the analysis and comparison.The purpose of this paper is to provide useful reference for GPS software users to process data. 展开更多
关键词 GPS data processing POINT POSITION PRECISION
下载PDF
On the Efficiency of a CFD-Based Full Convolution Neural Network for the Post-Processing of Field Data 被引量:3
4
作者 Sheng Bai Feng Bao Fengzhi Zhao 《Fluid Dynamics & Materials Processing》 EI 2021年第1期39-47,共9页
The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regressi... The present study aims to improve the efficiency of typical procedures used for post-processing flow field data by applying a neural-network technology.Assuming a problem of aircraft design as the workhorse,a regression calculation model for processing the flow data of a FCN-VGG19 aircraft is elaborated based on VGGNet(Visual Geometry Group Net)and FCN(Fully Convolutional Network)techniques.As shown by the results,the model displays a strong fitting ability,and there is almost no over-fitting in training.Moreover,the model has good accuracy and convergence.For different input data and different grids,the model basically achieves convergence,showing good performances.It is shown that the proposed simulation regression model based on FCN has great potential in typical problems of computational fluid dynamics(CFD)and related data processing. 展开更多
关键词 CFD aircraft design FCN processing of flow field data regression calculation model
下载PDF
A novel method for clustering cellular data to improve classification
5
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
下载PDF
Image Post-Processing Method for Visual Data Mining
6
作者 REN Yong-gong YU Ge 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期15-20,共6页
Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image proces... Visual data mining is one of important approach of data mining techniques. Most of them are based on computer graphic techniques but few of them exploit image-processing techniques. This paper proposes an image processing method, named RNAM (resemble neighborhood averaging method), to facilitate visual data mining, which is used to post-process the data mining result-image and help users to discover significant features and useful patterns effectively. The experiments show that the method is intuitive, easily-understanding and effectiveness. It provides a new approach for visual data mining. 展开更多
关键词 visual data mining data visualization image processing
下载PDF
Observation data pre-processing and scientific data products generation of POLAR
7
作者 Zheng-Heng Li Jian-Chao Sun +8 位作者 Li-Ming Song Bo-Bing Wu Lu Li Xing Wen Hua-Lin Xiao Shao-Lin Xiong Lai-Yu Zhang Shuang-Nan Zhang Yong-Jie Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2019年第7期13-24,共12页
POLAR is a compact space-borne detector initially designed to measure the polarization of hard X-rays emitted from Gamma-Ray Bursts in the energy range 50–500 ke V.This instrument was launched successfully onboard th... POLAR is a compact space-borne detector initially designed to measure the polarization of hard X-rays emitted from Gamma-Ray Bursts in the energy range 50–500 ke V.This instrument was launched successfully onboard the Chinese space laboratory Tiangong-2(TG-2) on 2016 September 15.After being switched on a few days later,tens of gigabytes of raw detection data were produced in-orbit by POLAR and transferred to the ground every day.Before the launch date,a full pipeline and related software were designed and developed for the purpose of quickly pre-processing all the raw data from POLAR,which include both science data and engineering data,then to generate the high level scientific data products that are suitable for later science analysis.This pipeline has been successfully applied for use by the POLAR Science Data Center in the Institute of High Energy Physics(IHEP) after POLAR was launched and switched on.A detailed introduction to the pipeline and some of the core relevant algorithms are presented in this paper. 展开更多
关键词 GAMMA-RAY BURST general-methods data analysis-instrumentation POLARIMETERS
下载PDF
Fast distributed and parallel pre-processing on massive satellite data using grid computing
8
作者 Wongoo Lee Yunsoo Choi +1 位作者 Kangryul Shon Jaesoo Kim 《Journal of Central South University》 SCIE EI CAS 2014年第10期3850-3855,共6页
Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process en... Distributed/parallel-processing system like sun grid engine(SGE) that utilizes multiple nodes/cores is proposed for the faster processing of large sized satellite image data. After verification, distributed process environment for pre-processing performance can be improved by up to 560.65% from single processing system. Through this, analysis performance in various fields can be improved, and moreover, near-real time service can be achieved in near future. 展开更多
关键词 satellite data image processing computation intensive computing
下载PDF
Synthetic data as an investigative tool in hypertension and renal diseases research
9
作者 Aleena Jamal Som Singh Fawad Qureshi 《World Journal of Methodology》 2025年第1期9-13,共5页
There is a growing body of clinical research on the utility of synthetic data derivatives,an emerging research tool in medicine.In nephrology,clinicians can use machine learning and artificial intelligence as powerful... There is a growing body of clinical research on the utility of synthetic data derivatives,an emerging research tool in medicine.In nephrology,clinicians can use machine learning and artificial intelligence as powerful aids in their clinical decision-making while also preserving patient privacy.This is especially important given the epidemiology of chronic kidney disease,renal oncology,and hypertension worldwide.However,there remains a need to create a framework for guidance regarding how to better utilize synthetic data as a practical application in this research. 展开更多
关键词 Synthetic data Artificial intelligence NEPHROLOGY Blood pressure RESEARCH EDITORIAL
下载PDF
Intelligent Data Pre-processing Model in Integrated Ocean Observing Network System
10
作者 韩华 丁永生 刘凤鸣 《Journal of Donghua University(English Edition)》 EI CAS 2009年第5期499-502,共4页
There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analys... There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis. 展开更多
关键词 integrated ocean observing network intelligentdata pre-processing data cleaning fuzzy soft clustering
下载PDF
Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery 被引量:13
11
作者 徐涵秋 《Journal of China University of Geosciences》 SCIE CSCD 2006年第2期146-150,157,共6页
In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illuminati... In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invarlant features identified from multitemporal Landsat image pairs of Xiamen (厦门) and Fuzhou (福州) areas, both located in the eastern Fujian (福建) Province of China. Compared with the unnormalized image, the radiometric differences between the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnorrealized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference. 展开更多
关键词 LANDSAT radiometrie correction data normalization pseudo-invariant features image processing.
下载PDF
基于re3data的中英科学数据仓储平台对比研究 被引量:1
12
作者 袁烨 陈媛媛 《数字图书馆论坛》 CSSCI 2024年第2期13-23,共11页
以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛... 以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛联结国内外异质机构,推进多学科领域的交流与合作,有效扩充仓储许可权限与类型,优化技术标准的应用现况,提高元数据使用的灵活性。 展开更多
关键词 科学数据 数据仓储平台 re3data 中国 英国
下载PDF
Data Secure Storage Mechanism for IIoT Based on Blockchain 被引量:2
13
作者 Jin Wang Guoshu Huang +2 位作者 R.Simon Sherratt Ding Huang Jia Ni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4029-4048,共20页
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi... With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT. 展开更多
关键词 Blockchain IIoT data storage cryptographic commitment
下载PDF
Hadoop-based secure storage solution for big data in cloud computing environment 被引量:1
14
作者 Shaopeng Guan Conghui Zhang +1 位作者 Yilin Wang Wenqing Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期227-236,共10页
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose... In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average. 展开更多
关键词 Big data security data encryption HADOOP Parallel encrypted storage Zookeeper
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
15
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation 被引量:1
16
作者 Sujeong Byun Jinyeong Yu +3 位作者 Seho Cheon Seong Ho Lee Sung Hyuk Park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期186-196,共11页
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w... Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys. 展开更多
关键词 Plastic anisotropy Compression ANNEALING Machine learning data augmentation
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
17
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
18
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining 被引量:1
19
作者 Beibei Yang Zhongqiang Liu +1 位作者 Suzanne Lacasse Xin Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4088-4104,共17页
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli... Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas. 展开更多
关键词 LANDSLIDE Deformation characteristics Triggering factor data mining Three gorges reservoir
下载PDF
Benchmark experiment on slab^(238)U with D-T neutrons for validation of evaluated nuclear data 被引量:1
20
作者 Yan-Yan Ding Yang-Bo Nie +9 位作者 Yue Zhang Zhi-Jie Hu Qi Zhao Huan-Yu Zhang Kuo-Zhi Xu Shi-Yu Zhang Xin-Yi Pan Chang-Lin Lan Jie Ren Xi-Chao Ruan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期145-159,共15页
A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°an... A benchmark experiment on^(238)U slab samples was conducted using a deuterium-tritium neutron source at the China Institute of Atomic Energy.The leakage neutron spectra within energy levels of 0.8-16 MeV at 60°and 120°were measured using the time-of-flight method.The samples were prepared as rectangular slabs with a 30 cm square base and thicknesses of 3,6,and 9 cm.The leakage neutron spectra were also calculated using the MCNP-4C program based on the latest evaluated files of^(238)U evaluated neutron data from CENDL-3.2,ENDF/B-Ⅷ.0,JENDL-5.0,and JEFF-3.3.Based on the comparison,the deficiencies and improvements in^(238)U evaluated nuclear data were analyzed.The results showed the following.(1)The calculated results for CENDL-3.2 significantly overestimated the measurements in the energy interval of elastic scattering at 60°and 120°.(2)The calculated results of CENDL-3.2 overestimated the measurements in the energy interval of inelastic scattering at 120°.(3)The calculated results for CENDL-3.2 significantly overestimated the measurements in the 3-8.5 MeV energy interval at 60°and 120°.(4)The calculated results with JENDL-5.0 were generally consistent with the measurement results. 展开更多
关键词 Leakage neutron spectra URANIUM D-T neutron source Evaluated nuclear data
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部