An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is b...An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is built based on the thin-walled assumption. The dimensionless thermal equation is deduced by considering solid heat conduction along the passage length. The asymptotic analysis is used for the small parameter of heat conduction term in equation. The first order asymptotic solution to temperature distribution under weak solid heat conduction is achieved after Laplace transformation through the multiple scales method and the symbolic manipulation function in MATLAB. Semi-analytical solutions agree with tests and finite-difference numerical results. It is proved possible for the asymptotic analysis to improve the effectiveness, economics and precision of thermal research on regenerator.展开更多
A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generaliz...A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3) sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.展开更多
A physical method,based on the simplification of surface radiation terms in remote sensing equations, has been suggested to retrieve the surface temperature,vertical temperature profile and surface emissivity from the...A physical method,based on the simplification of surface radiation terms in remote sensing equations, has been suggested to retrieve the surface temperature,vertical temperature profile and surface emissivity from the first eight channel observations of TIROS-N/HIRS2.Analyses of several examples indicate that this method can obtain much more accurate temperatures in the lower atmosphere than a statistical technique, and that the surface temperature and emissivity retrieved are also reasonable.展开更多
As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain ...As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis.展开更多
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compare...Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.展开更多
In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming...In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming cores S140 and S199 were carried out. The data were processed by the Fourier filtering method. Line temperature fluctuations that exceed the noise level were detected. Assuming the cores consist of a large number of randomly moving small thermal fragments, the total number of frag- ments is - 4 × 106 for the region with linear size - 0.1 pc in S140 and - 106 for the region with linear size - 0.3 pc in S 199. Physical parameters of fragments in S 140 were obtained from detailed modeling of the HCN emission in the framework of the clumpy cloud model.展开更多
Reconstruction of plasma equilibrium plays an important role in the analysis and simulation of plasma experiments. The kinetic equilibrium reconstruction with pressure and edge current constraints has been employed on...Reconstruction of plasma equilibrium plays an important role in the analysis and simulation of plasma experiments. The kinetic equilibrium reconstruction with pressure and edge current constraints has been employed on EAST tokamak. However, the internal safety factor(q) profile is not accurate. This paper proposes a new way of incorporating q profile constraints into kinetic equilibrium reconstruction. The q profile is yielded from the Polarimeter Interferometer(POINT)reconstruction. Virtual probes containing information on q profile constraints are added to inputs of the kinetic equilibrium reconstruction program to obtain the final equilibrium. The new equilibrium produces a more accurate internal q profile. This improved method would help analyze EAST experiments.展开更多
Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temper...Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.展开更多
A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and part...A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4 A GIIRS(geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center(NSMC)during the periods from December 2019 to January 2020(winter) and from July 2020 to August 2020(summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1 D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error(RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there.Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg^(–1). Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 h Pa and 300 h Pa both in summer and winter in terms of RMSE.展开更多
Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to ...Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to the dynamic capacity increase of high voltage transmission lines to measure the conductor temperature and ambient temperature. The paper is focused on the experiment of DS18B20 both in the laboratory and outside. From the result of the lab temperature measurement data analysis, using 4 DS18B20’s is the most suitable plan, considering both accuracy and economical efficiency. In the experiment outside, we get four groups of conductor (uncharged) temperature and four groups of ambient temperature. The data proved that DS18B20 has good stability, and small measurement error. It is suitable for measuring the temperature of conductor and ambient in dynamic capacity increase, and helpful to improve the accuracy of the calculation of capacity increasing.展开更多
The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from whi...The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.展开更多
A new data insertion approach is applied to the Derber and Rosati ocean data assimilation (ODA) system, a system that uses a variational scheme to analyze ocean temperature and provide ocean model corrections continuo...A new data insertion approach is applied to the Derber and Rosati ocean data assimilation (ODA) system, a system that uses a variational scheme to analyze ocean temperature and provide ocean model corrections continuously. Utilizing the same analysis component as the original system, the new approach conducts analyses to derive model corrections intermittently at once-daily intervals. A technique similar to the Incremental Analysis Update (IAU) method of Bloom et al. is applied to incorporate the corrections into the model gradually and continuously. This approach is computationally more economical than the original.A 13-year global ocean analysis from 1986 to 1998 is produced using this new approach and compared with an analysis based on the original one. An examination of both analyses in the tropical Pacific Ocean shows that they have qualitatively similar annual and interannual temperature variability. However, the new approach produces smoother monthly analyses. Moreover, compared to the independent展开更多
The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has gre...The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has great prospects for applications in geophysical models.In terms of operational applications,along-track sea surface height(AT-SSH),swath sea surface temperature(S-SST)and in-situ temperature and salinity(T/S)profiles are assimilated using the LWEnKF in the northern South China Sea(SCS).To adapt to the vertical S-coordinates of the Regional Ocean Modelling System(ROMS),a vertical localization radius function is designed for T/S profiles assimilation using the LWEnKF.The results show that the LWEnKF outperforms the local particle filter(LPF)due to the introduction of the Ensemble Kalman Filter(EnKF)as a proposal density;the RMSEs of SSH and SST from the LWEnKF are comparable to the EnKF,but the RMSEs of T/S profiles reduce significantly by approximately 55%for the T profile and 35%for the S profile(relative to the EnKF).As a result,the LWEnKF makes more reasonable predictions of the internal ocean temperature field.In addition,the three-dimensional structures of nonlinear mesoscale eddies are better characterized when using the LWEnKF.展开更多
Any change in technical or environmental conditions of observations may result in bias from the precise values of observed climatic variables. The common name of these biases is inhomogeneity (IH). IHs usually appear ...Any change in technical or environmental conditions of observations may result in bias from the precise values of observed climatic variables. The common name of these biases is inhomogeneity (IH). IHs usually appear in a form of sudden shift or gradual trends in the time series of any variable, and the timing of the shift indicates the date of change in the conditions of observation. The seasonal cycle of radiation intensity often causes marked seasonal cycle in the IHs of observed temperature time series, since a substantial portion of them has direct or indirect connection to radiation changes in the micro-environment of the thermometer. Therefore the magnitudes of temperature IHs tend to be larger in summer than in winter. A new homogenisation method (ACMANT) has recently been developed which treats in a special way the seasonal changes of IH-sizes in temperature time series. The ACMANT is a further development of the Caussinus-Mestre method, that is one of the most effective tool among the known homogenising methods. The ACMANT applies a bivariate test for searching the timings of IHs, the two variables are the annual mean temperature and the amplitude of seasonal temperature-cycle. The ACMANT contains several further innovations whose efficiencies are tested with the benchmark of the COST ES0601 project. The paper describes the properties and the operation of ACMANT and presents some verification results. The results show that the ACMANT has outstandingly high performance. The ACMANT is a recommended method for homogenising networks of monthly temperature time series that observed in mid- or high geographical latitudes, because the harmonic seasonal cycle of IH-size is valid for these time series only.展开更多
In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and ...In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and analytical results are compared with those of the exact and integral methods results. The results show that the HAM can give much better approximations than the other approximate methods: Changes in heat fluxes and profiles of temperature are obtained at different times and positions for copper, iron and aluminum.展开更多
In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the ea...In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA) was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morohological resoonse, which is primarily driven by the intermittent larger storm waves.展开更多
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con...In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.展开更多
基金Supported by Chinese National Programs for High Technology Research and Development (No. 2001AA514013)
文摘An asymptotic semi-analytical method for heat transfer in counter-flow honeycomb regenerator is proposed. By introducing a combined heat-transfer coefficient between the gas and solid phase, a heat transfer model is built based on the thin-walled assumption. The dimensionless thermal equation is deduced by considering solid heat conduction along the passage length. The asymptotic analysis is used for the small parameter of heat conduction term in equation. The first order asymptotic solution to temperature distribution under weak solid heat conduction is achieved after Laplace transformation through the multiple scales method and the symbolic manipulation function in MATLAB. Semi-analytical solutions agree with tests and finite-difference numerical results. It is proved possible for the asymptotic analysis to improve the effectiveness, economics and precision of thermal research on regenerator.
基金The authors would like to thank Dr.Liu Shun for his valuable suggestions.This study was supported by the National Natural Science Foundation of China(Grant Nos.40375009 and 40305003).
文摘A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3) sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.
文摘A physical method,based on the simplification of surface radiation terms in remote sensing equations, has been suggested to retrieve the surface temperature,vertical temperature profile and surface emissivity from the first eight channel observations of TIROS-N/HIRS2.Analyses of several examples indicate that this method can obtain much more accurate temperatures in the lower atmosphere than a statistical technique, and that the surface temperature and emissivity retrieved are also reasonable.
文摘As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis.
基金National Natural Science Foundation of China(41475120)
文摘Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.
基金support of the RFBR grants(projects 15–02–06098,16–02–00761 and18–02–00660)support of the Russian Science Foundation grant(project 17–12–01256)
文摘In order to search for intensity fluctuations on the HCN(1-0) and HCO+(1-0) line pro- files, which could arise due to possible small-scale inhomogeneous structure, long-term observations of high-mass star-forming cores S140 and S199 were carried out. The data were processed by the Fourier filtering method. Line temperature fluctuations that exceed the noise level were detected. Assuming the cores consist of a large number of randomly moving small thermal fragments, the total number of frag- ments is - 4 × 106 for the region with linear size - 0.1 pc in S140 and - 106 for the region with linear size - 0.3 pc in S 199. Physical parameters of fragments in S 140 were obtained from detailed modeling of the HCN emission in the framework of the clumpy cloud model.
基金supported by National Key R&D Program of China(Nos.2019YFE03040004 and 2017YFE0300404)supported by Comprehensive Research Facility for Fusion Technology Program of China(No.2018000052-73-01-001228)。
文摘Reconstruction of plasma equilibrium plays an important role in the analysis and simulation of plasma experiments. The kinetic equilibrium reconstruction with pressure and edge current constraints has been employed on EAST tokamak. However, the internal safety factor(q) profile is not accurate. This paper proposes a new way of incorporating q profile constraints into kinetic equilibrium reconstruction. The q profile is yielded from the Polarimeter Interferometer(POINT)reconstruction. Virtual probes containing information on q profile constraints are added to inputs of the kinetic equilibrium reconstruction program to obtain the final equilibrium. The new equilibrium produces a more accurate internal q profile. This improved method would help analyze EAST experiments.
基金supported by the National Natural Science Foundation of China (Grant No. 41305089)the National Oceanic and Atmospheric Administration (Grant No. NA10NES4400013)the Public Industry-specific Fund for Meteorology (Grant No. GYHY201406011)
文摘Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.
基金supported in part by the National Key Research and Development Program of China under Grant No.2018YFC1507302in part by the National Natural Science Foundation of China under Grant No.41975028。
文摘A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4 A GIIRS(geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center(NSMC)during the periods from December 2019 to January 2020(winter) and from July 2020 to August 2020(summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1 D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error(RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there.Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg^(–1). Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 h Pa and 300 h Pa both in summer and winter in terms of RMSE.
文摘Dynamic capacity increase in high voltage electric power transmission line is currently the most economical method for solving electric power transmission bottleneck nowadays. DS18B20 temperature sensor is applied to the dynamic capacity increase of high voltage transmission lines to measure the conductor temperature and ambient temperature. The paper is focused on the experiment of DS18B20 both in the laboratory and outside. From the result of the lab temperature measurement data analysis, using 4 DS18B20’s is the most suitable plan, considering both accuracy and economical efficiency. In the experiment outside, we get four groups of conductor (uncharged) temperature and four groups of ambient temperature. The data proved that DS18B20 has good stability, and small measurement error. It is suitable for measuring the temperature of conductor and ambient in dynamic capacity increase, and helpful to improve the accuracy of the calculation of capacity increasing.
基金supported by the National Natural Science Foundation of China (Grant No. 11173038)
文摘The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.
基金This research was supported bythe National Science Foundation (ATM-9321354) and the National Oceanic and Atmospheric Administration (NA46-GP0217), and computing resources were provided by the National Center for Atmospheric Research Scientific Computin
文摘A new data insertion approach is applied to the Derber and Rosati ocean data assimilation (ODA) system, a system that uses a variational scheme to analyze ocean temperature and provide ocean model corrections continuously. Utilizing the same analysis component as the original system, the new approach conducts analyses to derive model corrections intermittently at once-daily intervals. A technique similar to the Incremental Analysis Update (IAU) method of Bloom et al. is applied to incorporate the corrections into the model gradually and continuously. This approach is computationally more economical than the original.A 13-year global ocean analysis from 1986 to 1998 is produced using this new approach and compared with an analysis based on the original one. An examination of both analyses in the tropical Pacific Ocean shows that they have qualitatively similar annual and interannual temperature variability. However, the new approach produces smoother monthly analyses. Moreover, compared to the independent
基金The National Key Research and Development Program of China under contract No.2018YFC1406202the National Natural Science Foundation of China under contract No.41830964.
文摘The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has great prospects for applications in geophysical models.In terms of operational applications,along-track sea surface height(AT-SSH),swath sea surface temperature(S-SST)and in-situ temperature and salinity(T/S)profiles are assimilated using the LWEnKF in the northern South China Sea(SCS).To adapt to the vertical S-coordinates of the Regional Ocean Modelling System(ROMS),a vertical localization radius function is designed for T/S profiles assimilation using the LWEnKF.The results show that the LWEnKF outperforms the local particle filter(LPF)due to the introduction of the Ensemble Kalman Filter(EnKF)as a proposal density;the RMSEs of SSH and SST from the LWEnKF are comparable to the EnKF,but the RMSEs of T/S profiles reduce significantly by approximately 55%for the T profile and 35%for the S profile(relative to the EnKF).As a result,the LWEnKF makes more reasonable predictions of the internal ocean temperature field.In addition,the three-dimensional structures of nonlinear mesoscale eddies are better characterized when using the LWEnKF.
文摘Any change in technical or environmental conditions of observations may result in bias from the precise values of observed climatic variables. The common name of these biases is inhomogeneity (IH). IHs usually appear in a form of sudden shift or gradual trends in the time series of any variable, and the timing of the shift indicates the date of change in the conditions of observation. The seasonal cycle of radiation intensity often causes marked seasonal cycle in the IHs of observed temperature time series, since a substantial portion of them has direct or indirect connection to radiation changes in the micro-environment of the thermometer. Therefore the magnitudes of temperature IHs tend to be larger in summer than in winter. A new homogenisation method (ACMANT) has recently been developed which treats in a special way the seasonal changes of IH-sizes in temperature time series. The ACMANT is a further development of the Caussinus-Mestre method, that is one of the most effective tool among the known homogenising methods. The ACMANT applies a bivariate test for searching the timings of IHs, the two variables are the annual mean temperature and the amplitude of seasonal temperature-cycle. The ACMANT contains several further innovations whose efficiencies are tested with the benchmark of the COST ES0601 project. The paper describes the properties and the operation of ACMANT and presents some verification results. The results show that the ACMANT has outstandingly high performance. The ACMANT is a recommended method for homogenising networks of monthly temperature time series that observed in mid- or high geographical latitudes, because the harmonic seasonal cycle of IH-size is valid for these time series only.
文摘In the current work, transient heat conduction in a semi-infinite medium is considered for its many applications in various heat fields. Here, the homotopy analysis method (HAM) is applied to solve this problem and analytical results are compared with those of the exact and integral methods results. The results show that the HAM can give much better approximations than the other approximate methods: Changes in heat fluxes and profiles of temperature are obtained at different times and positions for copper, iron and aluminum.
基金supported by the UK Natural Environment Research Council(Grant No.NE/J005606/1)the UK Engineering and Physical Sciences Research Council(Grant No.EP/C005392/1)the Ensemble Estimation of Flood Risk in a Changing Climate(EFRa CC)project funded by the British Council under its Global Innovation Initiative
文摘In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA) was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morohological resoonse, which is primarily driven by the intermittent larger storm waves.
文摘In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.