期刊文献+
共找到298篇文章
< 1 2 15 >
每页显示 20 50 100
A Prototype Regional GSI-based EnKF-Variational Hybrid Data Assimilation System for the Rapid Refresh Forecasting System:Dual-Resolution Implementation and Testing Results 被引量:8
1
作者 Yujie PAN Ming XUE +1 位作者 Kefeng ZHU Mingjun WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第5期518-530,共13页
A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh f... A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds. 展开更多
关键词 dual-resolution 3D ensemble variational data assimilation system Rapid Refresh forecasting system
下载PDF
New data assimilation system DNDAS for high-dimensional models
2
作者 皇群博 曹小群 +2 位作者 朱孟斌 张卫民 刘柏年 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期73-82,共10页
The tangent linear(TL) models and adjoint(AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great effo... The tangent linear(TL) models and adjoint(AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great efforts, either by hand, or by automatic differentiation tools. In order to break these limitations, a new data assimilation system, dual-number data assimilation system(DNDAS), is designed based on the dual-number automatic differentiation principles. We investigate the performance of DNDAS with two different optimization schemes and subsequently give a discussion on whether DNDAS is appropriate for high-dimensional forecast models. The new data assimilation system can avoid the complicated reverse integration of the adjoint model, and it only needs the forward integration in the dual-number space to obtain the cost function and its gradient vector concurrently. To verify the correctness and effectiveness of DNDAS, we implemented DNDAS on a simple ordinary differential model and the Lorenz-63 model with different optimization methods. We then concentrate on the adaptability of DNDAS to the Lorenz-96 model with high-dimensional state variables. The results indicate that whether the system is simple or nonlinear, DNDAS can accurately reconstruct the initial condition for the forecast model and has a strong anti-noise characteristic. Given adequate computing resource, the quasi-Newton optimization method performs better than the conjugate gradient method in DNDAS. 展开更多
关键词 data assimilation dual-number OPTIMIZATION dual-number data assimilation system
下载PDF
Toward development of the 4Dvar data assimilation system in the Bering Sea:reconstruction of the mean dynamic ocean topography
3
作者 Gleb Panteleev Dmitri Nechaev +3 位作者 Vladimir Luchin Phyllis Stabeno Nikolai Maximenko Motoyoshi Ikeda 《Chinese Journal of Polar Science》 2008年第2期123-134,共12页
The Bering Sea circulation is derived as a variational inverse of hydrographic profiles( temperature and salinity) , atmospheric climatologies and historical observation of ocean curents. The important result of thi... The Bering Sea circulation is derived as a variational inverse of hydrographic profiles( temperature and salinity) , atmospheric climatologies and historical observation of ocean curents. The important result of this study is estimate of the mean climatological sea surface height (SSH) that can be used as a reference for satellite altimetry sea level anomaly data in the Bering Sea region. Numerical experiments reveal that, when combined with satellite altimetry, the obtained reference SSH effectively constrains a realistic reconstruction of the Amukta Pass circulation. 展开更多
关键词 Bering Sea mean dynamic ocean topography 4Dvar data assimilation system.
下载PDF
Assimilating Surface Observations in a Four-Dimensional Variational Doppler Radar Data Assimilation System to Improve the Analysis and Forecast of a Squall Line Case 被引量:7
4
作者 Xingchao CHEN Kun ZHAO +2 位作者 Juanzhen SUN Bowen ZHOU Wen-Chau LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第10期1106-1119,共14页
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and wind... This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS. 展开更多
关键词 VDRAS 4-D data assimilation radar data surface data squall line
下载PDF
ASSIMILATION OF REAL OBSERVATIONAL DATA WITH THE GSI-HYBRID DATA ASSIMILATION SYSTEM TO IMPROVE TYPHOON FORECAST 被引量:6
5
作者 李泓 骆婧瑶 陈葆德 《Journal of Tropical Meteorology》 SCIE 2015年第4期400-407,共8页
A hybrid GSI (Grid-point Statistical Interpolation)-ETKF (Ensemble Transform Kalman Filter) data assimila- tion system has been recently developed for the WRF (Weather Research and Forecasting) model and tested ... A hybrid GSI (Grid-point Statistical Interpolation)-ETKF (Ensemble Transform Kalman Filter) data assimila- tion system has been recently developed for the WRF (Weather Research and Forecasting) model and tested with simu- lated observations for tropical cyclone (TC) forecast. This system is based on the existing GSI but with ensemble back- ground information incorporated. As a follow-up, this work extends the new system to assimilate real observations to further understand the hybrid scheme. As a first effort to explore the system with real observations, relatively coarse grid resolution (27 km) is used. A case study of typhoon Muifa (2011) is performed to assimilate real observations in- cluding conventional in-situ and satellite data. The hybrid system with flow-dependent ensemble eovariance shows sig- nificant improvements with respect to track forecast compared to the standard GSI system which in theory is three di- mensional variational analysis (3DVAR). By comparing the analyses, analysis increments and forecasts, the hybrid sys- tem is found to be potentially able to recognize the existence of TC vortex, adjust its position systematically, better de- scribe the asymmetric structure of typhoon Muifa and maintain the dynamic and thermodynamic balance in typhoon ini- tial field. In addition, a cold-start hybrid approach by using the global ensembles to provide flow-dependent error is test- ed and similar results are revealed with those from cycled GSI-ETKF approach. 展开更多
关键词 hybrid data assimilation GSI ETKF tropical cyclone
下载PDF
Typhoon Track Forecast with a Hybrid GSI-ETKF Data Assimilation System 被引量:5
6
作者 LUO Jing-Yao CHEN Bao-De +2 位作者 LI Hong FAN Guang-Zhou WANG Xiao-Feng 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第3期161-166,共6页
A hybrid grid-point statistical interpolation-ensemble transform Kalman filter (GSI-ETKF) data assimilation system for the Weather Research and Forecasting (WRF) model was developed and applied to typhoon track foreca... A hybrid grid-point statistical interpolation-ensemble transform Kalman filter (GSI-ETKF) data assimilation system for the Weather Research and Forecasting (WRF) model was developed and applied to typhoon track forecast with simulated dropsonde observations. This hybrid system showed significantly improved results with respect to tropical cyclone track forecast compared to the standard GSI system in the case of Muifa in 2011. Further analyses revealed that the flow-dependent ensemble covariance was the major contributor to the better performance of the GSI-ETKF system than the standard GSI system; the GSI-ETKF system was found to be potentially able to adjust the position of the typhoon vortex systematically and better update the environmental field. 展开更多
关键词 data assimilation HYBRID tropical cyclone flow-dependent
下载PDF
An Ocean Data Assimilation System in the Indian Ocean and West Pacific Ocean 被引量:4
7
作者 YAN Changxiang ZHU Jiang XIE Jiping 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1460-1472,共13页
The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian ... The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian and West Pacific oceans is an endeavor motivated by this goal. In this study, we describe the system in detail. Moreover, the reanalysis in the joint area of Asia, the Indian Ocean, and the western Pacific Ocean (hereafter AIPOcean) constructed using multi-year model integration with data assimilation is used to test the performance of this system. The ocean model is an eddy-resolving, hybrid coordinate ocean model. Various types of observations including in-situ temperature and salinity profiles (mechanical bathythermograph, expendable bathythermograph, Array for Real-time Geostrophic Oceanography, Tropical Atmosphere Ocean Array, conductivity-temperature-depth, station data), remotely-sensed sea surface temperature, and altimetry sea level anomalies, are assimilated into the reanalysis via the ensemble optimal interpolation method. An ensemble of model states sampled from a long-term integration is allowed to change with season, rather than remaining stationary. The estimated background error covariance matrix may reasonably reflect the seasonality and anisotropy. We evaluate the performance of AIPOcean during the period 1993-2006 by comparisons with independent observations, and some reanalysis products. We show that AIPOcean reduces the errors of subsurface temperature and salinity, and reproduces mesoscale eddies. In contrast to ECCO and SODA products, AIPOcean captures the interannual variability and linear trend of sea level anomalies very well. AIPOcean also shows a good consistency with tide gauges. 展开更多
关键词 ocean data assimilation REANALYSIS ensemble optimal interpolation background error covariance
下载PDF
Use of Microwave Radiances from Metop-C and Fengyun-3 C/D Satellites for a Northern European Limited-area Data Assimilation System 被引量:3
8
作者 Magnus LINDSKOG Adam DYBBROE Roger RANDRIAMAMPIANINA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第8期1415-1428,共14页
MetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilatio... MetCoOp is a Nordic collaboration on operational Numerical Weather Prediction based on a common limited-area km-scale ensemble system. The initial states are produced using a 3-dimensional variational data assimilation scheme utilizing a large amount of observations from conventional in-situ measurements, weather radars, global navigation satellite system, advanced scatterometer data and satellite radiances from various satellite platforms. A version of the forecasting system which is aimed for future operations has been prepared for an enhanced assimilation of microwave radiances. This enhanced data assimilation system will use radiances from the Microwave Humidity Sounder, the Advanced Microwave Sounding Unit-A and the Micro-Wave Humidity Sounder-2 instruments on-board the Metop-C and Fengyun-3 C/D polar orbiting satellites. The implementation process includes channel selection, set-up of an adaptive bias correction procedure, and careful monitoring of data usage and quality control of observations. The benefit of the additional microwave observations in terms of data coverage and impact on analyses, as derived using the degree of freedom of signal approach, is demonstrated. A positive impact on forecast quality is shown, and the effect on the precipitation for a case study is examined. Finally, the role of enhanced data assimilation techniques and adaptions towards nowcasting are discussed. 展开更多
关键词 data assimilation regional numerical weather prediction microwave radiances
下载PDF
The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System:Single-point Experiment 被引量:2
9
作者 刘娟娟 王斌 王曙东 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1303-1310,共8页
A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-... A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with adjointbased 4DVar and three-dimensional variational data (3DVar) assimilations using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The results reveal that DRP-4DVar can reasonably generate a background error covariance matrix (simply B-matrix) during the assimilation window from an initial estimation using a number of initial condition dependent historical forecast samples. In contrast, flow-dependence in the B-matrix of MM5 4DVar is barely detectable. It is argued that use of diagonal estimation in the B-matrix of the MM5 4DVar method at the initial time leads to this failure. The experiments also show that the increments produced by DRP-4DVar are anisotropic and no longer symmetric with respect to observation location due to the effects of the weather trends captured in its B-matrix. This differs from the MM5 3DVar which does not consider the influence of heterogeneous forcing on the correlation structure of the B-matrix, a condition that is realistic for many situations. Thus, the MM5 3DVar assimilation could only present an isotropic and homogeneous structure in its increments. 展开更多
关键词 DRP-4DVar data assimilation flow dependence single-point experiment
下载PDF
A New Global Four-Dimensional Variational Ocean Data Assimilation System and Its Application 被引量:1
10
作者 刘娟 王斌 +1 位作者 刘海龙 俞永强 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期680-691,共12页
A four-dimensional variational data assimilation (4DVar) system of the LASG/IAP Climate Ocean Model, version 1.0 (LICOM1.0), named LICOM-3DVM, has been developed using the three-dimensional variational data assimi... A four-dimensional variational data assimilation (4DVar) system of the LASG/IAP Climate Ocean Model, version 1.0 (LICOM1.0), named LICOM-3DVM, has been developed using the three-dimensional variational data assimilation of mapped observation (3DVM), a 4DVar method newly proposed in the past two years. Two experiments with 12-year model integrations were designed to validate it. One is the assimilation run, called ASSM, which incorporated the analyzed weekly sea surface temperature (SST) fields from Reynolds and Smith (OISST) between 1990 and 2001 once a week by the LICOM-3DVM. The other is the control run without any assimilation, named CTL. ASSM shows that the simulated temperatures of the upper ocean (above 50 meters), especially the SST of equatorial Pacific, coincide with the Tropic Atmosphere Ocean (TAO) mooring data, the World Ocean Atlas 2001 (WOA01) data and the Met Office Hadley Centre's sea ice and sea surface temperature (HadISST) data. It decreased the cold bias existing in CTL in the eastern Pacific and produced a Nifio index that agrees with observation well. The validation results suggest that the LICOM-3DVM is able to effectively adjust the model results of the ocean temperature, although it's hard to correct the subsurface results and it even makes them worse in some areas due to the incorporation of only surface data. Future development of the LICOM-3DVM is to include subsurface in situ observations and satellite observations to further improve model simulations. 展开更多
关键词 3DVM 4DVAR ocean data assimilation LICOM SST
下载PDF
The REMO Ocean Data Assimilation System into HYCOM(RODAS_H):General Description and Preliminary Results 被引量:1
11
作者 Clemente Augusto Souza TANAJURA Alex Novaes SANTANA +3 位作者 Davi MIGNAC Leonardo Nascimento LIMA Konstantin BELYAEV XIE Ji-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第5期464-470,共7页
The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed ... The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%. 展开更多
关键词 ocean data assimilation ensemble optimalinterpolation observing system experiment HYCOM Atlantic Ocean
下载PDF
Estimation and Correction of Model Bias in the NASA/GMAO GEOS5 Data Assimilation System:Sequential Implementation 被引量:1
12
作者 Banglin ZHANC Vijay TALLAPRAGADA +2 位作者 Fuzhong WENG Jason S1PPEL Zaizhong MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第6期659-672,共14页
This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The ... This study presents a simplified multivariate bias correction scheme that is sequentially implemented in the GEOS5 data assimilation system and compared against a control experiment without model bias correction. The results show considerable improvement in terms of the mean biases of rawinsonde observation-minus-background (OmB) residuals for observed water vapor, wind and temperature variables. The time series spectral analysis shows whitening of bias-corrected OmB residuals, and mean biases for rawinsonde observation-minus-analysis (OmA) are also improved. Some wind and temperature biases in the control experiment near the equatorial tropopause nearly vanish from the bias-corrected experiment. Despite the analysis improvement, the bias correction scheme has only a moderate impact on forecast skill. Significant interaction is also found among quality-control, satellite observation bias correction, and background bias correction, and the latter positively impacts satellite bias correction. 展开更多
关键词 data assimilation model bias estimation and correction
下载PDF
Evaluation of an ocean data assimilation system for Chinese marginal seas with a focus on the South China Sea
13
作者 许大志 李熙晨 +1 位作者 朱江 齐义泉 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2011年第2期414-426,共13页
Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) s... Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) scheme and HYbrid Coordinate Ocean Model(HYCOM) for marginal seas around China was developed.This system can assimilate both satellite observations of sea surface temperature(SST) and along-track sea level anomaly(SLA) data.The purpose of this study was to evaluate the performance of the system.Two experiments were performed,which spanned a 3-year period from January 1,2004 to December 30,2006,with and without data assimilation.The data assimilation results were promising,with a positive impact on the modeled fields.The SST and SLA were clearly improved in terms of bias and root mean square error over the whole domain.In addition,the assimilations provided improvements in some regions to the surface field where mesoscale processes are not well simulated by the model.Comparisons with surface drifter trajectories showed that assimilated SST and SLA also better represent surface currents,with drifter trajectories fitting better to the contours of SLA field than that without assimilation.The forecasting capacity of this assimilation system was also evaluated through a case study of a birth-and-death process of an anticyclone eddy in the Northern South China Sea(NSCS),in which the anticyclone eddy was successfully hindcasted by the assimilation system.This study suggests the data assimilation system gives reasonable descriptions of the near-surface ocean state and can be applied to forecast mesoscale ocean processes in the marginal seas around China. 展开更多
关键词 data assimilation EnOI Scheme HYCOM model South China Sea
下载PDF
IMPROVEMENT OF OCEAN DATA ASSIMILATION SYSTEM AND CLIMATE PREDICTION BY ASSIMILATING ARGO DATA
14
作者 李清泉 张人禾 刘益民 《Journal of Tropical Meteorology》 SCIE 2015年第2期171-184,共14页
The Argo(Array for Real-time Geostrophic Oceanography) data from 1998 to 2003 were used in the Beijing Climate Center-Global Ocean Data Assimilation System(BCC-GODAS). The results show that the utilization of Argo glo... The Argo(Array for Real-time Geostrophic Oceanography) data from 1998 to 2003 were used in the Beijing Climate Center-Global Ocean Data Assimilation System(BCC-GODAS). The results show that the utilization of Argo global ocean data in BCC-GODAS brings about remarkable improvements in assimilation effects. The assimilated sea surface temperature(SST) of BCC-GODAS can well represent the climatological states of observational data. Comparison experiments based on a global coupled atmosphere-ocean general circulation model(AOCGM) were conducted for exploring the roles of ocean data assimilation system with or without Argo data in improving the climate predictability of rainfall in boreal summer. Firstly, the global ocean data assimilation system BCC-GODAS was used to obtain ocean assimilation data under the conditions with or without Argo data. Then, the global coupled atmosphere-ocean general circulation model(AOCGM) was utilized to do hindcast experiments with the two sets of the assimilation data as initial oceanic fields. The simulated results demonstrate that the seasonal predictability of rainfall in boreal summer, particularly in China, increases greatly when initial oceanic conditions with Argo data are utilized. The distribution of summer rainfall in China hindcast by the AOGCM under the condition when Argo data are used is more in accordance with observation than that when no Agro data are used. The area of positive correlation between hindcast and observation enlarges and the hindcast skill of rainfall over China in summer improves significantly when Argo data are used. 展开更多
关键词 Argo data ocean data assimilation climate prediction AOGCM
下载PDF
The climatology and interannual variability of the East Asian summer monsoonsimulated by a weakly coupled data assimilation system
15
作者 LIN Renping ZHENG Fei DONG Xiao 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期140-146,共7页
With the motivation to improve the simulation of the East Asian summer monsoon(EASM) in coupled climate models, oceanic data assimilation(DA) was used in CAS-ESM-C(Chinese Academy of Sciences–Earth System Model–Clim... With the motivation to improve the simulation of the East Asian summer monsoon(EASM) in coupled climate models, oceanic data assimilation(DA) was used in CAS-ESM-C(Chinese Academy of Sciences–Earth System Model–Climate Component) in this study. Observed sea surface temperature was assimilated into CAS-ESM-C. The climatology and interannual variability of the EASM simulated in CAS-ESM-C with DA were compared with a traditional AMIP-type run.Results showed that the climatological spatial pattern and annual cycle of precipitation in the western North Paci?c, and the ENSO-related and EASM-related EASM circulation and precipitation, were largely improved. As shown in this study, air–sea coupling is important for EASM simulation. In addition, oceanic DA synchronizes the coupled model with the real world without breaking the air–sea coupling process. These two successful factors make the assimilation experiment a more reasonable experimental design than traditional AMIP-type simulations. 展开更多
关键词 Ocean data assimilation coupled model East Asian summer monsoon AMIP
下载PDF
A Local Ensemble Transform Kalman Filter Data Assimilation System for the Global FSU Atmospheric Model
16
作者 Rosangela Saher Cintra Steve Cocke 《Journal of Mechanics Engineering and Automation》 2015年第3期185-196,共12页
Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. We implemented a data assimilation scheme called LETKF... Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. We implemented a data assimilation scheme called LETKF (local ensemble transform Kalman filter) with FSUGSM (Florida State University Global Spectral Model) and made an experiment to evaluate the initial condition generated to numerical weather prediction to FSUGSM model. The LETKF analysis carries out independently at each grid point with the use of "local" observations. An ensemble of estimates in state space represents uncertainty. The FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model, where the variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space The assimilation cycle runs on the period 01/01/2001 to 31/01/2001 at (00, 06, 12 and 18 GMT) for each day. We examined the atmospheric fields during the period and the OMF (observation-minus-forecast) and the OMA (observation-minus-analysis) statistics to verify the analysis quality comparing with forecasts and observations. The analyses present stability and show suitable to initiate the weather predictions. 展开更多
关键词 data assimilation Kalman filter numerical weather prediction global atmospheric model.
下载PDF
Development and Testing of the GRAPES Regional Ensemble-3DVAR Hybrid Data Assimilation System 被引量:10
17
作者 陈良吕 陈静 +1 位作者 薛纪善 夏宇 《Journal of Meteorological Research》 SCIE CSCD 2015年第6期981-996,共16页
Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at ... Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an ensemble-based 3DVAR(En-3DVAR) hybrid data assimilation system for GRAPES-Meso(the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance.Considering the problems of the ensemble-based data assimilation part of the system,including the reduction in the degree of geostrophic balance between variables,and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation,corresponding measures were taken to optimize and ameliorate the system.Accordingly,a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable.A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale.Then,a number of hybrid data assimilation experiments were carried out.The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8.Compared with the 3DVAR data assimilation,the geopotential height forecast of the hybrid data assimilation experiments improved very little,but the wind forecast improved slightly at each forecast time,especially over 300 hPa.Overall,the hybrid data assimilation demonstrates some advantages over the3 DVAR data assimilation. 展开更多
关键词 GRAPES GRAPES_MESO hybrid data assimilation regional ensemble prediction extended control variable
原文传递
Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI 3DVar, EnKF, and Hybrid En3DVar for the Analysis and Short-Term Forecast of a Supercell Storm Case
18
作者 Rong KONG Ming XUE +2 位作者 Edward R.MANSELL Chengsi LIU Alexandre O.FIERRO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期263-277,共15页
Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interp... Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series ”(GOES-R) Geostationary Lightning Mapper(GLM) flash extent density(FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter(GSI-EnKF) framework were previously developed and tested with a mesoscale convective system(MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational(EnVar) hybrid data assimilation(DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar(PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation. 展开更多
关键词 GOES-R LIGHTNING data assimilation ENKF EnVar
下载PDF
Arctic sea ice concentration and thickness data assimilation in the FIO-ESM climate forecast system 被引量:5
19
作者 Qi Shu Fangli Qiao +5 位作者 Jiping Liu Zhenya Song Zhiqiang Chen Jiechen Zhao Xunqiang Yin Yajuan Song 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期65-75,共11页
To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model(FIO-ESM)climate forecast system,satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic ... To improve the Arctic sea ice forecast skill of the First Institute of Oceanography-Earth System Model(FIO-ESM)climate forecast system,satellite-derived sea ice concentration and sea ice thickness from the Pan-Arctic IceOcean Modeling and Assimilation System(PIOMAS)are assimilated into this system,using the method of localized error subspace transform ensemble Kalman filter(LESTKF).Five-year(2014–2018)Arctic sea ice assimilation experiments and a 2-month near-real-time forecast in August 2018 were conducted to study the roles of ice data assimilation.Assimilation experiment results show that ice concentration assimilation can help to get better modeled ice concentration and ice extent.All the biases of ice concentration,ice cover,ice volume,and ice thickness can be reduced dramatically through ice concentration and thickness assimilation.The near-real-time forecast results indicate that ice data assimilation can improve the forecast skill significantly in the FIO-ESM climate forecast system.The forecasted Arctic integrated ice edge error is reduced by around 1/3 by sea ice data assimilation.Compared with the six near-real-time Arctic sea ice forecast results from the subseasonal-toseasonal(S2 S)Prediction Project,FIO-ESM climate forecast system with LESTKF ice data assimilation has relatively high Arctic sea ice forecast skill in 2018 summer sea ice forecast.Since sea ice thickness in the PIOMAS is updated in time,it is a good choice for data assimilation to improve sea ice prediction skills in the near-realtime Arctic sea ice seasonal prediction. 展开更多
关键词 FIO-ESM sea ice data assimilation sea ice forecast
下载PDF
Optimal Assimilation of Microwave Upper-Level Sounding Data in CMA-GFS
20
作者 Changjiao DONG Hao HU Fuzhong WENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期2043-2060,共18页
Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China M... Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction(NWP)models by using satellite upper-air sounding channels as anchors.However,since the China Meteorological Administration Global Forecast System(CMA-GFS)has a model top near 0.1 hPa(60 km),the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa.In this study,channels 12–14 of the Advanced Microwave Sounding Unit A(AMSU-A)onboard five satellites of NOAA and METOP,whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS.It is shown that the new“Anchor”approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles.The bias growth rate of simulated upper-level channel observations is reduced to±0.001 K d^(–1),compared to–0.03 K d^(–1)derived from the current dynamic correction scheme.The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa. 展开更多
关键词 CMA-GFS upper-level model bias anchoring bias correction satellite microwave data assimilation
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部