Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is...Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.展开更多
To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migr...To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migration algorithm using Workload-aware Consolidation Technique(ELMWCT).As opposed to traditional energy-aware scheduling algorithms,which often focus on only one-dimensional resource,the two algorithms are based on the fact that multiple resources(such as CPU,memory and network bandwidth)are shared by users concurrently in cloud data centres and heterogeneous workloads have different resource consumption characteristics.Both algorithms investigate the problem of consolidating heterogeneous workloads.They try to execute all Virtual Machines(VMs) with the minimum amount of Physical Machines(PMs),and then power off unused physical servers to reduce power consumption.Simulation results show that both algorithms efficiently utilise the resources in cloud data centres,and the multidimensional resources have good balanced utilizations,which demonstrate their promising energy saving capability.展开更多
We propose a dynamic automated infrastructure model for the cloud data centre which is aimed as an efficient service stipulation for the enormous number of users.The data center and cloud computing technologies have b...We propose a dynamic automated infrastructure model for the cloud data centre which is aimed as an efficient service stipulation for the enormous number of users.The data center and cloud computing technologies have been at the moment rendering attention to major research and development efforts by companies,governments,and academic and other research institutions.In that,the difficult task is to facilitate the infrastructure to construct the information available to application-driven services and make business-smart decisions.On the other hand,the challenges that remain are the provision of dynamic infrastructure for applications and information anywhere.Further,developing technologies to handle private cloud computing infrastructure and operations in a completely automated and secure way has been critical.As a result,the focus of this article is on service and infrastructure life cycle management.We also show how cloud users interact with the cloud,how they request services from the cloud,how they select cloud strategies to deliver the desired service,and how they analyze their cloud consumption.展开更多
11% of Irish electricity was consumed by data centres in 2020. The Irish data centre industry and the cooling methods utilised require reformative actions in the coming years to meet EU Energy policies. The resell of ...11% of Irish electricity was consumed by data centres in 2020. The Irish data centre industry and the cooling methods utilised require reformative actions in the coming years to meet EU Energy policies. The resell of heat, alternative cooling methods or carbon reduction methods are all possibilities to conform to these policies. This study aims to determine the viability of the resell of waste heat from data centres both technically and economically. This was determined using a novel application of thermodynamics to determine waste heat recovery potential in Irish data centres, and the current methods of heat generation for economical comparison. This paper also explores policy surrounding waste heat recovery within the industry. The Recoverable Carnot Equivalent Power (RCEP) is theoretically calculated for the three potential cooling methods for Irish data centres. These are air, hybrid, and immersion cooling techniques. This is the maximum useable heat that can be recovered from a data centre rack. This study is established under current operating conditions which are optimised for cooling performance, that air cooling has the highest potential RCEP of 0.39 kW/rack. This is approximately 8% of the input electrical power that can be captured as useable heat. Indicating that Irish data centres have the energy potential to be heat providers in the Irish economy. This study highlighted the technical and economic aspects of prevalent cooling techniques and determined air cooling heat recovery cost can be reduced to 0.01 €/kWhth using offsetting. This is financially competitive with current heating solutions in Ireland.展开更多
The automatic generation of test data is a key step in realizing automated testing.Most automated testing tools for unit testing only provide test case execution drivers and cannot generate test data that meets covera...The automatic generation of test data is a key step in realizing automated testing.Most automated testing tools for unit testing only provide test case execution drivers and cannot generate test data that meets coverage requirements.This paper presents an improved Whale Genetic Algorithm for generating test data re-quired for unit testing MC/DC coverage.The proposed algorithm introduces an elite retention strategy to avoid the genetic algorithm from falling into iterative degradation.At the same time,the mutation threshold of the whale algorithm is introduced to balance the global exploration and local search capabilities of the genetic al-gorithm.The threshold is dynamically adjusted according to the diversity and evolution stage of current popu-lation,which positively guides the evolution of the population.Finally,an improved crossover strategy is pro-posed to accelerate the convergence of the algorithm.The improved whale genetic algorithm is compared with genetic algorithm,whale algorithm and particle swarm algorithm on two benchmark programs.The results show that the proposed algorithm is faster for test data generation than comparison methods and can provide better coverage with fewer evaluations,and has great advantages in generating test data.展开更多
As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage p...As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature.展开更多
基金performed in the Projects " LIGHTNESS : Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects" (No. 318606) "COSIGN: Combining Optics and SDN In next Generation data centre Networks" (No. 619572) supported by European Commission FP7
文摘Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.
基金supported by the Opening Project of State key Laboratory of Networking and Switching Technology under Grant No.SKLNST-2010-1-03the National Natural Science Foundation of China under Grants No.U1333113,No.61303204+1 种基金the Sichuan Province seedling project under Grant No.2012ZZ036the Scientific Research Fund of Sichuan Normal University under Grant No.13KYL06
文摘To reduce energy consumption in cloud data centres,in this paper,we propose two algorithms called the Energy-aware Scheduling algorithm using Workload-aware Consolidation Technique(ESWCT) and the Energyaware Live Migration algorithm using Workload-aware Consolidation Technique(ELMWCT).As opposed to traditional energy-aware scheduling algorithms,which often focus on only one-dimensional resource,the two algorithms are based on the fact that multiple resources(such as CPU,memory and network bandwidth)are shared by users concurrently in cloud data centres and heterogeneous workloads have different resource consumption characteristics.Both algorithms investigate the problem of consolidating heterogeneous workloads.They try to execute all Virtual Machines(VMs) with the minimum amount of Physical Machines(PMs),and then power off unused physical servers to reduce power consumption.Simulation results show that both algorithms efficiently utilise the resources in cloud data centres,and the multidimensional resources have good balanced utilizations,which demonstrate their promising energy saving capability.
基金This research work was fully supported by King Khalid University,Abha,Kingdom of Saudi Arabia,for funding this work through a Large Research Project under grant number RGP/161/42.
文摘We propose a dynamic automated infrastructure model for the cloud data centre which is aimed as an efficient service stipulation for the enormous number of users.The data center and cloud computing technologies have been at the moment rendering attention to major research and development efforts by companies,governments,and academic and other research institutions.In that,the difficult task is to facilitate the infrastructure to construct the information available to application-driven services and make business-smart decisions.On the other hand,the challenges that remain are the provision of dynamic infrastructure for applications and information anywhere.Further,developing technologies to handle private cloud computing infrastructure and operations in a completely automated and secure way has been critical.As a result,the focus of this article is on service and infrastructure life cycle management.We also show how cloud users interact with the cloud,how they request services from the cloud,how they select cloud strategies to deliver the desired service,and how they analyze their cloud consumption.
文摘11% of Irish electricity was consumed by data centres in 2020. The Irish data centre industry and the cooling methods utilised require reformative actions in the coming years to meet EU Energy policies. The resell of heat, alternative cooling methods or carbon reduction methods are all possibilities to conform to these policies. This study aims to determine the viability of the resell of waste heat from data centres both technically and economically. This was determined using a novel application of thermodynamics to determine waste heat recovery potential in Irish data centres, and the current methods of heat generation for economical comparison. This paper also explores policy surrounding waste heat recovery within the industry. The Recoverable Carnot Equivalent Power (RCEP) is theoretically calculated for the three potential cooling methods for Irish data centres. These are air, hybrid, and immersion cooling techniques. This is the maximum useable heat that can be recovered from a data centre rack. This study is established under current operating conditions which are optimised for cooling performance, that air cooling has the highest potential RCEP of 0.39 kW/rack. This is approximately 8% of the input electrical power that can be captured as useable heat. Indicating that Irish data centres have the energy potential to be heat providers in the Irish economy. This study highlighted the technical and economic aspects of prevalent cooling techniques and determined air cooling heat recovery cost can be reduced to 0.01 €/kWhth using offsetting. This is financially competitive with current heating solutions in Ireland.
文摘The automatic generation of test data is a key step in realizing automated testing.Most automated testing tools for unit testing only provide test case execution drivers and cannot generate test data that meets coverage requirements.This paper presents an improved Whale Genetic Algorithm for generating test data re-quired for unit testing MC/DC coverage.The proposed algorithm introduces an elite retention strategy to avoid the genetic algorithm from falling into iterative degradation.At the same time,the mutation threshold of the whale algorithm is introduced to balance the global exploration and local search capabilities of the genetic al-gorithm.The threshold is dynamically adjusted according to the diversity and evolution stage of current popu-lation,which positively guides the evolution of the population.Finally,an improved crossover strategy is pro-posed to accelerate the convergence of the algorithm.The improved whale genetic algorithm is compared with genetic algorithm,whale algorithm and particle swarm algorithm on two benchmark programs.The results show that the proposed algorithm is faster for test data generation than comparison methods and can provide better coverage with fewer evaluations,and has great advantages in generating test data.
基金supported by the Ministerio Espanol de Ciencia e Innovación under Project Number PID2020-115570GB-C22,MCIN/AEI/10.13039/501100011033by the Cátedra de Empresa Tecnología para las Personas(UGR-Fujitsu).
文摘As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature.