期刊文献+
共找到379,719篇文章
< 1 2 250 >
每页显示 20 50 100
Flight Time Minimization of UAV for Cooperative Data Collection in Probabilistic LoS Channel
1
作者 Yan Li Shaoyi Xu +1 位作者 Yunpu Wu Dongji Li 《China Communications》 SCIE CSCD 2024年第2期210-226,共17页
This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabili... This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively. 展开更多
关键词 data collection flight time probabilistic line-of-sight channel unlicensed band unmanned aerial vehicle
下载PDF
Actor-Critic-Based UAV-Assisted Data Collection in the Wireless Sensor Network
2
作者 Huang Xiaoge Wang Lingzhi +1 位作者 He Yong Chen Qianbin 《China Communications》 SCIE CSCD 2024年第4期163-177,共15页
Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacki... Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms. 展开更多
关键词 actor critic data collection deep reinforcement learning unmanned aerial vehicle wireless sensor network
下载PDF
Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks
3
作者 Haosong Gou Gaoyi Zhang +2 位作者 RenêRipardo Calixto Senthil Kumar Jagatheesaperumal Victor Hugo C.de Albuquerque 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1077-1102,共26页
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ... Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs. 展开更多
关键词 Wireless sensor networks reliable data transmission medical emergencies CLUSTER data collection routing scheme
下载PDF
KSKV:Key-Strategy for Key-Value Data Collection with Local Differential Privacy
4
作者 Dan Zhao Yang You +2 位作者 Chuanwen Luo Ting Chen Yang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3063-3083,共21页
In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.Howev... In recent years,the research field of data collection under local differential privacy(LDP)has expanded its focus fromelementary data types to includemore complex structural data,such as set-value and graph data.However,our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection.Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key.Additionally,the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not yield an optimal utility tradeoff.Recognizing the importance of obtaining accurate key frequencies and mean estimations for key-value data collection,this paper presents a novel framework:the Key-Strategy Framework forKey-ValueDataCollection under LDP.Initially,theKey-StrategyUnary Encoding(KS-UE)strategy is proposed within non-interactive frameworks for the purpose of privacy budget allocation to achieve precise key frequencies;subsequently,the Key-Strategy Generalized Randomized Response(KS-GRR)strategy is introduced for interactive frameworks to enhance the efficiency of collecting frequent keys through group-anditeration methods.Both strategies are adapted for scenarios in which users possess either a single or multiple key-value pairs.Theoretically,we demonstrate that the variance of KS-UE is lower than that of existing methods.These claims are substantiated through extensive experimental evaluation on real-world datasets,confirming the effectiveness and efficiency of the KS-UE and KS-GRR strategies. 展开更多
关键词 KEY-VALUE local differential privacy frequency estimation mean estimation data perturbation
下载PDF
Design and implementation of railway green performance basic data collection system 被引量:1
5
作者 Xiangru Lyu Hui Li 《High-Speed Railway》 2023年第4期265-272,共8页
This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange... This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange schemas. A data classification system has been established from the perspectives of businesses, processes,and entities. A BIM(Building Information Modelling) model data extraction scheme is proposed based on field similarity matching and a document content extraction scheme is proposed based on image recognition. A railway green performance basic data collection system has been developed, achieving efficient collection and integrated management of railway green performance basic data. This system can provide data support for applications such as railway carbon emissions accounting, green cost-benefit analysis, and evaluation of green design solutions. 展开更多
关键词 RAILWAY Green performance data collection METAdata data classifcation BIM Image recognition
下载PDF
基于re3data的中英科学数据仓储平台对比研究 被引量:1
6
作者 袁烨 陈媛媛 《数字图书馆论坛》 CSSCI 2024年第2期13-23,共11页
以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛... 以re3data为数据获取源,选取中英两国406个科学数据仓储为研究对象,从分布特征、责任类型、仓储许可、技术标准及质量标准等5个方面、11个指标对两国科学数据仓储的建设情况进行对比分析,试图为我国数据仓储的可持续发展提出建议:广泛联结国内外异质机构,推进多学科领域的交流与合作,有效扩充仓储许可权限与类型,优化技术标准的应用现况,提高元数据使用的灵活性。 展开更多
关键词 科学数据 数据仓储平台 re3data 中国 英国
下载PDF
Autonomous UAV 3D trajectory optimization and transmission scheduling for sensor data collection on uneven terrains
7
作者 Andrey V.Savkin Satish C.Verma Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期154-160,共7页
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha... This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Unmanned aerial system UAS Unmanned aerial vehicle UAV Wireless sensor networks UAS-Assisted data collection 3D trajectory optimization data transmission scheduling
下载PDF
NOMA Empowered Energy Efficient Data Collection and Wireless Power Transfer in Space-Air-Ground Integrated Networks
8
作者 Cong Zhou Shuo Shi +1 位作者 Chenyu Wu Zhenyu Xu 《China Communications》 SCIE CSCD 2023年第8期17-31,共15页
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network... As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights. 展开更多
关键词 NOMA Space-Air-Ground Integrated Networks data collection wireless power transfer resource allocation trajectory optimization
下载PDF
Real-Time Data Transmission with Data Carrier Support Value in Neighbor Strategic Collection in WSN
9
作者 S.Ponnarasi T.Rajendran 《Computers, Materials & Continua》 SCIE EI 2023年第6期6039-6057,共19页
An efficient trust-aware secure routing and network strategy-based data collection scheme is presented in this paper to enhance the performance and security of wireless sensor networks during data collection.The metho... An efficient trust-aware secure routing and network strategy-based data collection scheme is presented in this paper to enhance the performance and security of wireless sensor networks during data collection.The method first discovers the routes between the data sensors and the sink node.Several factors are considered for each sensor node along the route,including energy,number of neighbours,previous transmissions,and energy depletion ratio.Considering all these variables,the Sink Reachable Support Measure and the Secure Communication Support Measure,the method evaluates two distinct measures.The method calculates the data carrier support value using these two metrics.A single route is chosen to collect data based on the value of data carrier support.It has contributed to the design of Secure Communication Support(SCS)Estimation.This has been measured according to the strategy of each hop of the route.The suggested method improves the security and efficacy of data collection in wireless sensor networks.The second stage uses the two-fish approach to build a trust model for secure data transfer.A sim-ulation exercise was conducted to evaluate the effectiveness of the suggested framework.Metrics,including PDR,end-to-end latency,and average residual energy,were assessed for the proposed model.The efficiency of the suggested route design serves as evidence for the average residual energy for the proposed framework. 展开更多
关键词 data carrier support data collection neighbor strategy secure routing wireless sensor network
下载PDF
AUV-Aided Data Collection Considering Adaptive Ocean Currents for Underwater Wireless Sensor Networks
10
作者 Yunyun Li Yanjing Sun +1 位作者 Qingyan Ren Song Li 《China Communications》 SCIE CSCD 2023年第4期356-367,共12页
Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and... Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and sensor node movement.We propose an adaptive AUV-assisted data collection strategy for ocean currents to address these issues.First,we consider the energy consumption of an AUV in conjunction with the value of information(VoI)over the sensor nodes and formulate an optimization problem to maximize the VoI-energy ratio.The AUV yaw problem is then solved by deriving the AUV's reachable region in different ocean current environments and the optimal cruising direction to the target nodes.Finally,using the predicted VoI-energy ratio,we sequentially design a distributed path planning algorithm to select the next target node for AUV.The simulation results indicate that the proposed strategy can utilize ocean currents to aid AUV navigation,thereby reducing the AUV's energy consumption and ensuring timely data collection. 展开更多
关键词 underwater sensor networks data collection ocean currents value of information energy consumption
下载PDF
Energy-Efficient Data Collection over Underwater MI-Assisted Acoustic Cooperative MIMO WSNs
11
作者 Qingyan Ren Yanjing Sun +2 位作者 Song Li Bin Wang Zhengda Yu 《China Communications》 SCIE CSCD 2023年第11期96-110,共15页
Underwater magnetic induction(MI)-assisted acoustic cooperative multiple-input-multipleoutput(MIMO) has been recently proposed as a promising technique for underwater wireless sensor networks(UWSNs).For the more,the e... Underwater magnetic induction(MI)-assisted acoustic cooperative multiple-input-multipleoutput(MIMO) has been recently proposed as a promising technique for underwater wireless sensor networks(UWSNs).For the more,the energy utilization of energy-constrained sensor nodes is one of the key issues in UWSNs,and it relates to the network lifetime.In this paper,we present an energy-efficient data collection for underwater MI-assisted acoustic cooperative MIMO wireless sensor networks(WSNs),including the formation of cooperative MIMO and relay link establishment.Firstly,the cooperative MIMO is formed by considering its expected transmission range and the energy balance of nodes with it.Particularly,from the perspective of the node’s energy consumption,the expected cooperative MIMO size and the selection of master node(MN) are proposed.Sequentially,to improve the coverage of the networks and prolong the network lifetime,relay links are established by relay selection algorithm that using matching theory.Finally,the simulation results show that the proposed data collection improves its efficiency,reduces the energy consumption of the master node,improves the networks’ coverage,and extends the network lifetime. 展开更多
关键词 cooperative MIMO cooperative MIMO size data collection heterogeneous UWSNs relay link establishment
下载PDF
Joint UAV 3D deployment and sensor power allocation for energy-efficient and secure data collection
12
作者 王东 LI Guizhi +1 位作者 SUN Xiaojing WANG Changqing 《High Technology Letters》 EI CAS 2023年第3期223-230,共8页
Unmanned aerial vehicles(UAVs) are advantageous for data collection in wireless sensor networks(WSNs) due to its low cost of use,flexible deployment,controllable mobility,etc. However,how to cope with the inherent iss... Unmanned aerial vehicles(UAVs) are advantageous for data collection in wireless sensor networks(WSNs) due to its low cost of use,flexible deployment,controllable mobility,etc. However,how to cope with the inherent issues of energy limitation and data security in the WSNs is challenging in such an application paradigm. To this end,based on the framework of physical layer security,an optimization problem for maximizing secrecy energy efficiency(EE) of data collection is formulated,which focuses on optimizing the UAV’s positions and the sensors’ transmit power. To overcome the difficulties in solving the optimization problem,the methods of fractional programming and successive convex approximation are then adopted to gradually transform the original problem into a series of tractable subproblems which are solved in an iterative manner. As shown in simulation results,by the joint designs in the spatial domain of UAV and the power domain of sensors,the proposed algorithm achieves a significant improvement of secrecy EE and rate. 展开更多
关键词 physical layer security energy efficiency(EE) power allocation unmanned aerial vehicle(UAV) data collection wireless sensor network(WSN)
下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
13
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
下载PDF
Data Secure Storage Mechanism for IIoT Based on Blockchain 被引量:2
14
作者 Jin Wang Guoshu Huang +2 位作者 R.Simon Sherratt Ding Huang Jia Ni 《Computers, Materials & Continua》 SCIE EI 2024年第3期4029-4048,共20页
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi... With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of IIoT.Blockchain technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the IIoT.In the traditional blockchain,data is stored in a Merkle tree.As data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based IIoT.Accordingly,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of data.To solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC structure.Secondly,this paper uses PVC instead of the Merkle tree to store big data generated by IIoT.PVC can improve the efficiency of traditional VC in the process of commitment and opening.Finally,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of experiments.This mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT. 展开更多
关键词 Blockchain IIoT data storage cryptographic commitment
下载PDF
Hadoop-based secure storage solution for big data in cloud computing environment 被引量:1
15
作者 Shaopeng Guan Conghui Zhang +1 位作者 Yilin Wang Wenqing Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期227-236,共10页
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose... In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average. 展开更多
关键词 Big data security data encryption HADOOP Parallel encrypted storage Zookeeper
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
16
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation 被引量:1
17
作者 Sujeong Byun Jinyeong Yu +3 位作者 Seho Cheon Seong Ho Lee Sung Hyuk Park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期186-196,共11页
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w... Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys. 展开更多
关键词 Plastic anisotropy Compression ANNEALING Machine learning data augmentation
下载PDF
Endoscopic intramural cystogastrostomy for treatment of peripancreatic fluid collection: A viewpoint from a surgeon 被引量:1
18
作者 Chen-Guo Ker 《World Journal of Gastroenterology》 SCIE CAS 2024年第6期610-613,共4页
Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of... Percutaneous or endoscopic drainage is the initial choice for the treatment of peripancreatic fluid collection in symptomatic patients.Endoscopic transgastric fenestration(ETGF)was first reported for the management of pancreatic pseu-docysts of 20 patients in 2008.From a surgeon’s viewpoint,ETGF is a similar procedure to cystogastrostomy in that they both produce a wide outlet orifice for the drainage of fluid and necrotic debris.ETGF can be performed at least 4 wk after the initial onset of acute pancreatitis and it has a high priority over the surgical approach.However,the surgical approach usually has a better success rate because surgical cystogastrostomy has a wider outlet(>6 cm vs 2 cm)than ETGF.However,percutaneous or endoscopic drainage,ETGF,and surgical approach offer various treatment options for peripancreatic fluid collection patients based on their conditions. 展开更多
关键词 Pancreatitis Pancreatic pseudocyst Endoscopic cystogastrostomy Surgical cystogastrostomy Peripancreatic fluid collection Fenestration for pancreatic cyst
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
19
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
Detection of Turbulence Anomalies Using a Symbolic Classifier Algorithm in Airborne Quick Access Record(QAR)Data Analysis 被引量:1
20
作者 Zibo ZHUANG Kunyun LIN +1 位作者 Hongying ZHANG Pak-Wai CHAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1438-1449,共12页
As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The ... As the risks associated with air turbulence are intensified by climate change and the growth of the aviation industry,it has become imperative to monitor and mitigate these threats to ensure civil aviation safety.The eddy dissipation rate(EDR)has been established as the standard metric for quantifying turbulence in civil aviation.This study aims to explore a universally applicable symbolic classification approach based on genetic programming to detect turbulence anomalies using quick access recorder(QAR)data.The detection of atmospheric turbulence is approached as an anomaly detection problem.Comparative evaluations demonstrate that this approach performs on par with direct EDR calculation methods in identifying turbulence events.Moreover,comparisons with alternative machine learning techniques indicate that the proposed technique is the optimal methodology currently available.In summary,the use of symbolic classification via genetic programming enables accurate turbulence detection from QAR data,comparable to that with established EDR approaches and surpassing that achieved with machine learning algorithms.This finding highlights the potential of integrating symbolic classifiers into turbulence monitoring systems to enhance civil aviation safety amidst rising environmental and operational hazards. 展开更多
关键词 turbulence detection symbolic classifier quick access recorder data
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部