An efficient trust-aware secure routing and network strategy-based data collection scheme is presented in this paper to enhance the performance and security of wireless sensor networks during data collection.The metho...An efficient trust-aware secure routing and network strategy-based data collection scheme is presented in this paper to enhance the performance and security of wireless sensor networks during data collection.The method first discovers the routes between the data sensors and the sink node.Several factors are considered for each sensor node along the route,including energy,number of neighbours,previous transmissions,and energy depletion ratio.Considering all these variables,the Sink Reachable Support Measure and the Secure Communication Support Measure,the method evaluates two distinct measures.The method calculates the data carrier support value using these two metrics.A single route is chosen to collect data based on the value of data carrier support.It has contributed to the design of Secure Communication Support(SCS)Estimation.This has been measured according to the strategy of each hop of the route.The suggested method improves the security and efficacy of data collection in wireless sensor networks.The second stage uses the two-fish approach to build a trust model for secure data transfer.A sim-ulation exercise was conducted to evaluate the effectiveness of the suggested framework.Metrics,including PDR,end-to-end latency,and average residual energy,were assessed for the proposed model.The efficiency of the suggested route design serves as evidence for the average residual energy for the proposed framework.展开更多
This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabili...This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.展开更多
Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacki...Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.展开更多
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the...Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.展开更多
With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G ...With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timelysolutions for real-time applications such as medicine, tracking, surveillance,etc. Energy efficiency, data collection, and route planning are crucial processesto improve the network communication. These processes are highly difficultowing to high mobility, presence of non-stationary links, dynamic topology,and energy-restricted UAVs. With this motivation, the current research paperpresents a novel Energy Aware Data Collection with Routing Planning for6G-enabled UAV communication (EADCRP-6G) technique. The goal of theproposed EADCRP-6G technique is to conduct energy-efficient cluster-baseddata collection and optimal route planning for 6G-enabled UAV networks.EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) andorganize these clusters. Besides, Artificial Fish Swarm-based Route Planning(AFSRP) technique is applied to choose an optimum set of routes for UAVcommunication in 6G networks. In order to validated whether the proposedEADCRP-6G technique enhances the performance, a series of simulationswas performed and the outcomes were investigated under different dimensions.The experimental results showcase that the proposed model outperformed allother existing models under different evaluation parameters.展开更多
Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a...Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.展开更多
Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international...Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international community once proposed by China. From strategic conception to implementation, GEI development has entered a new phase of joint action now. Gathering and building a global grid database is a prerequisite for conducting research on GEI. Based on the requirement of global grid data management and application, combining with big data and geographic information technology, this paper studies the global grid data acquisition and analysis process, sorts out and designs the global grid database structure supporting GEI research, and builds a global grid database system.展开更多
Underwater data collection is an importance part in the process of network monitoring,network management and intrusion detection.However,the limited-energy of nodes is a major challenge to collect underwater data.The ...Underwater data collection is an importance part in the process of network monitoring,network management and intrusion detection.However,the limited-energy of nodes is a major challenge to collect underwater data.The solution of this problem are not only in the hands of network topology but in the hands of path of autonomous underwater vehicle(AUV).With the problem in hand,an energy-efficient data collection scheme is designed for mobile underwater network.Especially,the data collection scheme is divided into two phases,i.e.,routing algorithm design for sensor nodes and path planing for AUV.With consideration of limited-energy and network robustness,Q-learning based dynamic routing algorithm is designed in the first phase to optimize the routing selection of nodes,through which a potential-game based optimal rigid graph method is proposed to balance the trade-off between the energy consumption and the network robustness.With the collected data,Q-learning based path planning strategy is proposed for AUV in the second phase to find the desired path to gather the data from data collector,then a mode-free tracking controller is developed to track the desired path accurately.Finally,the performance analysis and simulation results reveal that the proposed approach can guarantee energy-efficient and improve network stability.展开更多
In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and c...In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and communication standard in ensuring incessant availability of service.At the same time,the development of 6G enables the Unmanned Aerial Vehicles(UAVs)in offering cost and time-efficient solution to several applications like healthcare,surveillance,disaster management,etc.In UAV networks,energy efficiency and data collection are considered the major process for high quality network communication.But these procedures are found to be challenging because of maximum mobility,unstable links,dynamic topology,and energy restricted UAVs.These issues are solved by the use of artificial intelligence(AI)and energy efficient clustering techniques for UAVs in the 6G environment.With this inspiration,this work designs an artificial intelligence enabled cooperative cluster-based data collection technique for unmanned aerial vehicles(AECCDC-UAV)in 6G environment.The proposed AECCDC-UAV technique purposes for dividing the UAV network as to different clusters and allocate a cluster head(CH)to each cluster in such a way that the energy consumption(ECM)gets minimized.The presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization(QOSSO)algorithm for selecting the CHs and construct clusters.The QOSSO algorithm derives a fitness function involving three input parameters residual energy of UAVs,distance to neighboring UAVs,and degree of UAVs.The performance of the AECCDC-UAV technique is validated in many aspects and the obtained experimental values demonstration promising results over the recent state of art methods.展开更多
Wireless sensor networks(WSNs)have gotten a lot of attention as useful tools for gathering data.The energy problem has been a fundamental constraint and challenge faced by many WSN applications due to the size and cos...Wireless sensor networks(WSNs)have gotten a lot of attention as useful tools for gathering data.The energy problem has been a fundamental constraint and challenge faced by many WSN applications due to the size and cost constraints of the sensor nodes.This paper proposed a data fusion model based on the back propagation neural network(BPNN)model to address the problem of a large number of invalid or redundant data.Using three layeredbased BPNNs and a TEEN threshold,the proposed model describes the cluster structure and filters out unnecessary details.During the information transmission process,the neural network’s output function is used to deal with a large amount of sensing data,where the feature value of sensing data is extracted and transmitted to the sink node.In terms of life cycle,data traffic,and network use,simulation results show that the proposed data fusion model outperforms the traditional TEEN protocol.As a result,the proposed scheme increases the life cycle of the network thereby lowering energy usage and traffic.展开更多
This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of...This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of adverse winter weather conditions on highway driving behavior based on automated (computer) and manual methods. The research was conducted through two case studies. The first case study was conducted to evaluate the feasibility of applying an au- tomated approach to extracting driver behavior data based on 15 video recordings obtained in the winter 2013 at three dif- ferent locations on the Don Valley Parkway in Toronto, Canada. A comparison was made between the automated approach and manual approach, and issues in collecting data using the automated approach under winter conditions were identified. The second case study was based on high quality data collected in the winter 2014, at a location on Highway 25 in Montreal, Canada. The results demonstrate the effectiveness of the automated analytical framework in analyzing driver behavior, as well as evaluating the impact of adverse winter weather conditions on driver behavior. This approach could be applied to evaluate winter maintenance strategies and crash risk on highways during adverse winter weather conditions.展开更多
In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive conve...In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive convex approximation(MVF-SCA)is proposed.First,the Rician channel model is adopted in the system and sensor nodes(SNs)are divided into key nodes and common nodes.Secondly,the data collection problem is formulated as a mixed integer non-linear program(MINLP)problem.The problem is divided into two sub-problems according to the different types of SNs to seek a sub-optimal solution with a low complexity.Finally,the MVF-SCA algorithm for UAV trajectory planning is proposed,which can not only be used for daily data collection in the target area,but also collect time-sensitive abnormal data in time when the exception occurs.Simulation results show that,compared with the existing classic traveling salesman problem(TSP)algorithm and greedy path planning algorithm,the VoI collected by the proposed algorithm can be improved by about 15%to 30%.展开更多
This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange...This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange schemas. A data classification system has been established from the perspectives of businesses, processes,and entities. A BIM(Building Information Modelling) model data extraction scheme is proposed based on field similarity matching and a document content extraction scheme is proposed based on image recognition. A railway green performance basic data collection system has been developed, achieving efficient collection and integrated management of railway green performance basic data. This system can provide data support for applications such as railway carbon emissions accounting, green cost-benefit analysis, and evaluation of green design solutions.展开更多
With the rapid developments of Internet of Things(IoT)and proliferation of embedded devices,large volume of personal data are collected,which however,might carry massive private information about attributes that users...With the rapid developments of Internet of Things(IoT)and proliferation of embedded devices,large volume of personal data are collected,which however,might carry massive private information about attributes that users do not want to share.Many privacy-preserving methods have been proposed to prevent privacy leakage by perturbing raw data or extracting task-oriented features at local devices.Unfortunately,they would suffer from significant privacy leakage and accuracy drop when applied to other tasks as they are designed and optimized for predefined tasks.In this paper,we propose a novel task-free privacy-preserving data collection method via adversarial representation learning,called TF-ARL,to protect private attributes specified by users while maintaining data utility for unknown downstream tasks.To this end,we first propose a privacy adversarial learning mechanism(PAL)to protect private attributes by optimizing the feature extractor to maximize the adversary’s prediction uncertainty on private attributes,and then design a conditional decoding mechanism(ConDec)to maintain data utility for downstream tasks by minimizing the conditional reconstruction error from the sanitized features.With the joint learning of PAL and ConDec,we can learn a privacy-aware feature extractor where the sanitized features maintain the discriminative information except privacy.Extensive experimental results on real-world datasets demonstrate the effectiveness of TF-ARL.展开更多
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network...As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.展开更多
This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node ind...This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node individually employing traditional automatic-repeat-request(ARQ) protocol.We propose a practical node cooperation(NC) protocol to enhance the collection efficiency,utilizing the fact that underwater nodes can overhear the transmission of others.To reduce the source level of underwater nodes,the underwater data collection area is divided into several sub-zones,and in each sub-zone,the mobile surface node adopting the NC protocol could switch adaptively between selective relay cooperation(SRC) and dynamic network coded cooperation(DNC) .The difference of SRC and DNC lies in whether or not the selected relay node combines the local data and the data overheard from undecoded node(s) to form network coded packets in the retransmission phase.The NC protocol could also be applied across the sub-zones due to the wiretap property.In addition,we investigate the effects of different mobile collection paths,collection area division and cooperative zone design for energy saving.The numerical results showthat the proposed NC protocol can effectively save energy compared with the traditional ARQ scheme.展开更多
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha...This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.展开更多
Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application ...Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.展开更多
文摘An efficient trust-aware secure routing and network strategy-based data collection scheme is presented in this paper to enhance the performance and security of wireless sensor networks during data collection.The method first discovers the routes between the data sensors and the sink node.Several factors are considered for each sensor node along the route,including energy,number of neighbours,previous transmissions,and energy depletion ratio.Considering all these variables,the Sink Reachable Support Measure and the Secure Communication Support Measure,the method evaluates two distinct measures.The method calculates the data carrier support value using these two metrics.A single route is chosen to collect data based on the value of data carrier support.It has contributed to the design of Secure Communication Support(SCS)Estimation.This has been measured according to the strategy of each hop of the route.The suggested method improves the security and efficacy of data collection in wireless sensor networks.The second stage uses the two-fish approach to build a trust model for secure data transfer.A sim-ulation exercise was conducted to evaluate the effectiveness of the suggested framework.Metrics,including PDR,end-to-end latency,and average residual energy,were assessed for the proposed model.The efficiency of the suggested route design serves as evidence for the average residual energy for the proposed framework.
基金supported by the National Key Research and Development Program under Grant 2022YFB3303702the Key Program of National Natural Science Foundation of China under Grant 61931001+1 种基金supported by the National Natural Science Foundation of China under Grant No.62203368the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1440。
文摘This paper investigates the data collection in an unmanned aerial vehicle(UAV)-aided Internet of Things(IoT) network, where a UAV is dispatched to collect data from ground sensors in a practical and accurate probabilistic line-of-sight(LoS) channel. Especially, access points(APs) are introduced to collect data from some sensors in the unlicensed band to improve data collection efficiency. We formulate a mixed-integer non-convex optimization problem to minimize the UAV flight time by jointly designing the UAV 3D trajectory and sensors’ scheduling, while ensuring the required amount of data can be collected under the limited UAV energy. To solve this nonconvex problem, we recast the objective problem into a tractable form. Then, the problem is further divided into several sub-problems to solve iteratively, and the successive convex approximation(SCA) scheme is applied to solve each non-convex subproblem. Finally,the bisection search is adopted to speed up the searching for the minimum UAV flight time. Simulation results verify that the UAV flight time can be shortened by the proposed method effectively.
基金supported by the National Natural Science Foundation of China(NSFC)(61831002,62001076)the General Program of Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0726,No.cstc2020jcyjmsxmX0878).
文摘Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.
基金This work is supported by the National Natural Science Foundation of China(61772454,61811530332,61811540410,U1836208).
文摘Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.
文摘With technological advancements in 6G and Internet of Things(IoT), the incorporation of Unmanned Aerial Vehicles (UAVs) and cellularnetworks has become a hot research topic. At present, the proficient evolution of 6G networks allows the UAVs to offer cost-effective and timelysolutions for real-time applications such as medicine, tracking, surveillance,etc. Energy efficiency, data collection, and route planning are crucial processesto improve the network communication. These processes are highly difficultowing to high mobility, presence of non-stationary links, dynamic topology,and energy-restricted UAVs. With this motivation, the current research paperpresents a novel Energy Aware Data Collection with Routing Planning for6G-enabled UAV communication (EADCRP-6G) technique. The goal of theproposed EADCRP-6G technique is to conduct energy-efficient cluster-baseddata collection and optimal route planning for 6G-enabled UAV networks.EADCRP-6G technique deploys Improved Red Deer Algorithm-based Clustering (IRDAC) technique to elect an optimal set of Cluster Heads (CH) andorganize these clusters. Besides, Artificial Fish Swarm-based Route Planning(AFSRP) technique is applied to choose an optimum set of routes for UAVcommunication in 6G networks. In order to validated whether the proposedEADCRP-6G technique enhances the performance, a series of simulationswas performed and the outcomes were investigated under different dimensions.The experimental results showcase that the proposed model outperformed allother existing models under different evaluation parameters.
基金NSERC (Natural Sciences and Engineering Research Council of Canada) for the financial support provided to this research through a Collaborative Research Development grant (Grant No. 11R74149 Mine-to-Mill Integration for Block Cave Mines)
文摘Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.
文摘Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international community once proposed by China. From strategic conception to implementation, GEI development has entered a new phase of joint action now. Gathering and building a global grid database is a prerequisite for conducting research on GEI. Based on the requirement of global grid data management and application, combining with big data and geographic information technology, this paper studies the global grid data acquisition and analysis process, sorts out and designs the global grid database structure supporting GEI research, and builds a global grid database system.
基金Supported by the National Natural Science Foundation of China(61873345,62222314)the Distinguished Young Foundation of Hebei Province(F2022203001)+2 种基金the Central Guidance Local Foundation of Hebei Province(226Z3201G)the three-three-three Foundation of Hebei Province(C20221019)the Open Fund Project of Key Laboratory of Ocean Observation Technology,MNR(2021klootA02).
文摘Underwater data collection is an importance part in the process of network monitoring,network management and intrusion detection.However,the limited-energy of nodes is a major challenge to collect underwater data.The solution of this problem are not only in the hands of network topology but in the hands of path of autonomous underwater vehicle(AUV).With the problem in hand,an energy-efficient data collection scheme is designed for mobile underwater network.Especially,the data collection scheme is divided into two phases,i.e.,routing algorithm design for sensor nodes and path planing for AUV.With consideration of limited-energy and network robustness,Q-learning based dynamic routing algorithm is designed in the first phase to optimize the routing selection of nodes,through which a potential-game based optimal rigid graph method is proposed to balance the trade-off between the energy consumption and the network robustness.With the collected data,Q-learning based path planning strategy is proposed for AUV in the second phase to find the desired path to gather the data from data collector,then a mode-free tracking controller is developed to track the desired path accurately.Finally,the performance analysis and simulation results reveal that the proposed approach can guarantee energy-efficient and improve network stability.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1F1A1063319).
文摘In recent times,sixth generation(6G)communication technologies have become a hot research topic because of maximum throughput and low delay services for mobile users.It encompasses several heterogeneous resource and communication standard in ensuring incessant availability of service.At the same time,the development of 6G enables the Unmanned Aerial Vehicles(UAVs)in offering cost and time-efficient solution to several applications like healthcare,surveillance,disaster management,etc.In UAV networks,energy efficiency and data collection are considered the major process for high quality network communication.But these procedures are found to be challenging because of maximum mobility,unstable links,dynamic topology,and energy restricted UAVs.These issues are solved by the use of artificial intelligence(AI)and energy efficient clustering techniques for UAVs in the 6G environment.With this inspiration,this work designs an artificial intelligence enabled cooperative cluster-based data collection technique for unmanned aerial vehicles(AECCDC-UAV)in 6G environment.The proposed AECCDC-UAV technique purposes for dividing the UAV network as to different clusters and allocate a cluster head(CH)to each cluster in such a way that the energy consumption(ECM)gets minimized.The presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization(QOSSO)algorithm for selecting the CHs and construct clusters.The QOSSO algorithm derives a fitness function involving three input parameters residual energy of UAVs,distance to neighboring UAVs,and degree of UAVs.The performance of the AECCDC-UAV technique is validated in many aspects and the obtained experimental values demonstration promising results over the recent state of art methods.
文摘Wireless sensor networks(WSNs)have gotten a lot of attention as useful tools for gathering data.The energy problem has been a fundamental constraint and challenge faced by many WSN applications due to the size and cost constraints of the sensor nodes.This paper proposed a data fusion model based on the back propagation neural network(BPNN)model to address the problem of a large number of invalid or redundant data.Using three layeredbased BPNNs and a TEEN threshold,the proposed model describes the cluster structure and filters out unnecessary details.During the information transmission process,the neural network’s output function is used to deal with a large amount of sensing data,where the feature value of sensing data is extracted and transmitted to the sink node.In terms of life cycle,data traffic,and network use,simulation results show that the proposed data fusion model outperforms the traditional TEEN protocol.As a result,the proposed scheme increases the life cycle of the network thereby lowering energy usage and traffic.
文摘This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of adverse winter weather conditions on highway driving behavior based on automated (computer) and manual methods. The research was conducted through two case studies. The first case study was conducted to evaluate the feasibility of applying an au- tomated approach to extracting driver behavior data based on 15 video recordings obtained in the winter 2013 at three dif- ferent locations on the Don Valley Parkway in Toronto, Canada. A comparison was made between the automated approach and manual approach, and issues in collecting data using the automated approach under winter conditions were identified. The second case study was based on high quality data collected in the winter 2014, at a location on Highway 25 in Montreal, Canada. The results demonstrate the effectiveness of the automated analytical framework in analyzing driver behavior, as well as evaluating the impact of adverse winter weather conditions on driver behavior. This approach could be applied to evaluate winter maintenance strategies and crash risk on highways during adverse winter weather conditions.
基金The National Key R&D Program of China(No.2018YFB1500800)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2019025)+1 种基金Pre-Research Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414190405)the Open Project of the Key Laboratory of Wireless Sensor Network&Communication of Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences(No.20190907).
文摘In order to maximize the value of information(VoI)of collected data in unmanned aerial vehicle(UAV)-aided wireless sensor networks(WSNs),a UAV trajectory planning algorithm named maximum VoI first and successive convex approximation(MVF-SCA)is proposed.First,the Rician channel model is adopted in the system and sensor nodes(SNs)are divided into key nodes and common nodes.Secondly,the data collection problem is formulated as a mixed integer non-linear program(MINLP)problem.The problem is divided into two sub-problems according to the different types of SNs to seek a sub-optimal solution with a low complexity.Finally,the MVF-SCA algorithm for UAV trajectory planning is proposed,which can not only be used for daily data collection in the target area,but also collect time-sensitive abnormal data in time when the exception occurs.Simulation results show that,compared with the existing classic traveling salesman problem(TSP)algorithm and greedy path planning algorithm,the VoI collected by the proposed algorithm can be improved by about 15%to 30%.
基金supported by the Science and Technology Research and Development Plan of China State Railway Group Co.,Ltd.(L2023Z001).
文摘This study addressed the issues related to the collection and management of basic data for railway green performance. A railway green performance basic database has been constructed based on metadata and data exchange schemas. A data classification system has been established from the perspectives of businesses, processes,and entities. A BIM(Building Information Modelling) model data extraction scheme is proposed based on field similarity matching and a document content extraction scheme is proposed based on image recognition. A railway green performance basic data collection system has been developed, achieving efficient collection and integrated management of railway green performance basic data. This system can provide data support for applications such as railway carbon emissions accounting, green cost-benefit analysis, and evaluation of green design solutions.
基金supported by National Key R&D Program of China (Grant No. 2021ZD0112803)National Natural Science Foundation of China (Grants No. 62122066, U20A20182, 61872274)
文摘With the rapid developments of Internet of Things(IoT)and proliferation of embedded devices,large volume of personal data are collected,which however,might carry massive private information about attributes that users do not want to share.Many privacy-preserving methods have been proposed to prevent privacy leakage by perturbing raw data or extracting task-oriented features at local devices.Unfortunately,they would suffer from significant privacy leakage and accuracy drop when applied to other tasks as they are designed and optimized for predefined tasks.In this paper,we propose a novel task-free privacy-preserving data collection method via adversarial representation learning,called TF-ARL,to protect private attributes specified by users while maintaining data utility for unknown downstream tasks.To this end,we first propose a privacy adversarial learning mechanism(PAL)to protect private attributes by optimizing the feature extractor to maximize the adversary’s prediction uncertainty on private attributes,and then design a conditional decoding mechanism(ConDec)to maintain data utility for downstream tasks by minimizing the conditional reconstruction error from the sanitized features.With the joint learning of PAL and ConDec,we can learn a privacy-aware feature extractor where the sanitized features maintain the discriminative information except privacy.Extensive experimental results on real-world datasets demonstrate the effectiveness of TF-ARL.
基金supported by National Natural Science Foundation of China(No.62171158)the project“The Major Key Project of PCL(PCL2021A03-1)”from Peng Cheng Laboratorysupported by the Science and the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology(2018B030322004).
文摘As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.
基金supported in part by National Key Research and Development Program of China under Grants No.2016YFC1400200 and 2016YFC1400204National Natural Science Foundation of China under Grants No.41476026,41676024 and 41376040Fundamental Research Funds for the Central Universities of China under Grant No.220720140506
文摘This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node individually employing traditional automatic-repeat-request(ARQ) protocol.We propose a practical node cooperation(NC) protocol to enhance the collection efficiency,utilizing the fact that underwater nodes can overhear the transmission of others.To reduce the source level of underwater nodes,the underwater data collection area is divided into several sub-zones,and in each sub-zone,the mobile surface node adopting the NC protocol could switch adaptively between selective relay cooperation(SRC) and dynamic network coded cooperation(DNC) .The difference of SRC and DNC lies in whether or not the selected relay node combines the local data and the data overheard from undecoded node(s) to form network coded packets in the retransmission phase.The NC protocol could also be applied across the sub-zones due to the wiretap property.In addition,we investigate the effects of different mobile collection paths,collection area division and cooperative zone design for energy saving.The numerical results showthat the proposed NC protocol can effectively save energy compared with the traditional ARQ scheme.
基金funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571。
文摘This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Science and Technology Support Program of China (2015BAG10B01)the National Science Foundation of China under Grant No. 61232016, No.U1405254the PAPD fund
文摘Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.