From the beginning,the process of research and its publication is an ever-growing phenomenon and with the emergence of web technologies,its growth rate is overwhelming.On a rough estimate,more than thirty thousand res...From the beginning,the process of research and its publication is an ever-growing phenomenon and with the emergence of web technologies,its growth rate is overwhelming.On a rough estimate,more than thirty thousand research journals have been issuing around four million papers annually on average.Search engines,indexing services,and digital libraries have been searching for such publications over the web.Nevertheless,getting the most relevant articles against the user requests is yet a fantasy.It is mainly because the articles are not appropriately indexed based on the hierarchies of granular subject classification.To overcome this issue,researchers are striving to investigate new techniques for the classification of the research articles especially,when the complete article text is not available(a case of nonopen access articles).The proposed study aims to investigate the multilabel classification over the available metadata in the best possible way and to assess,“to what extent metadata-based features can perform in contrast to content-based approaches.”In this regard,novel techniques for investigating multilabel classification have been proposed,developed,and evaluated on metadata such as the Title and Keywords of the articles.The proposed technique has been assessed for two diverse datasets,namely,from the Journal of universal computer science(J.UCS)and the benchmark dataset comprises of the articles published by the Association for computing machinery(ACM).The proposed technique yields encouraging results in contrast to the state-ofthe-art techniques in the literature.展开更多
To reconstruct the missing data of the total electron content (TEC) observations, a new method is proposed, which is based on the empirical orthogonal functions (EOF) decomposition and the value of eigenvalue itse...To reconstruct the missing data of the total electron content (TEC) observations, a new method is proposed, which is based on the empirical orthogonal functions (EOF) decomposition and the value of eigenvalue itself. It is a self-adaptive EOF decomposition without any prior information needed, and the error of reconstructed data can be estimated. The interval quartering algorithm and cross-validation algorithm are used to compute the optimal number of EOFs for reconstruction. The interval quartering algorithm can reduce the computation time. The application of the data interpolating empirical orthogonal functions (DINEOF) method to the real data have demonstrated that the method can reconstruct the TEC map with high accuracy, which can be employed on the real-time system in the future work.展开更多
Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of m...Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.展开更多
文摘From the beginning,the process of research and its publication is an ever-growing phenomenon and with the emergence of web technologies,its growth rate is overwhelming.On a rough estimate,more than thirty thousand research journals have been issuing around four million papers annually on average.Search engines,indexing services,and digital libraries have been searching for such publications over the web.Nevertheless,getting the most relevant articles against the user requests is yet a fantasy.It is mainly because the articles are not appropriately indexed based on the hierarchies of granular subject classification.To overcome this issue,researchers are striving to investigate new techniques for the classification of the research articles especially,when the complete article text is not available(a case of nonopen access articles).The proposed study aims to investigate the multilabel classification over the available metadata in the best possible way and to assess,“to what extent metadata-based features can perform in contrast to content-based approaches.”In this regard,novel techniques for investigating multilabel classification have been proposed,developed,and evaluated on metadata such as the Title and Keywords of the articles.The proposed technique has been assessed for two diverse datasets,namely,from the Journal of universal computer science(J.UCS)and the benchmark dataset comprises of the articles published by the Association for computing machinery(ACM).The proposed technique yields encouraging results in contrast to the state-ofthe-art techniques in the literature.
基金supported by the National Natural Science Foundation of China(Grant No.41105013,41375028,and 61271106)the National Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011122)the Key Laboratory of Meteorological Observation and Information Processing Scientific Research Fund of Jiangsu Province,China(Grant No.KDXS1205)
文摘To reconstruct the missing data of the total electron content (TEC) observations, a new method is proposed, which is based on the empirical orthogonal functions (EOF) decomposition and the value of eigenvalue itself. It is a self-adaptive EOF decomposition without any prior information needed, and the error of reconstructed data can be estimated. The interval quartering algorithm and cross-validation algorithm are used to compute the optimal number of EOFs for reconstruction. The interval quartering algorithm can reduce the computation time. The application of the data interpolating empirical orthogonal functions (DINEOF) method to the real data have demonstrated that the method can reconstruct the TEC map with high accuracy, which can be employed on the real-time system in the future work.
基金Under the auspices of National Natural Science Foundation of China(No.41230751,41101547)Scientific Research Foundation of Graduate School of Nanjing University(No.2012CL14)
文摘Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.