期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive data fusion framework for modeling of non-uniform aerodynamic data 被引量:1
1
作者 Vinh PHAM Maxim TYAN +3 位作者 Tuan Anh NGUYEN Chi-Ho LEE L.V.Thang NGUYEN Jae-Woo LEE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期316-336,共21页
Multi-fidelity Data Fusion(MDF)frameworks have emerged as a prominent approach to producing economical but accurate surrogate models for aerodynamic data modeling by integrating data with different fidelity levels.How... Multi-fidelity Data Fusion(MDF)frameworks have emerged as a prominent approach to producing economical but accurate surrogate models for aerodynamic data modeling by integrating data with different fidelity levels.However,most existing MDF frameworks assume a uniform data structure between sampling data sources;thus,producing an accurate solution at the required level,for cases of non-uniform data structures is challenging.To address this challenge,an Adaptive Multi-fidelity Data Fusion(AMDF)framework is proposed to produce a composite surrogate model which can efficiently model multi-fidelity data featuring non-uniform structures.Firstly,the design space of the input data with non-uniform data structures is decomposed into subdomains containing simplified structures.Secondly,different MDF frameworks and a rule-based selection process are adopted to construct multiple local models for the subdomain data.On the other hand,the Enhanced Local Fidelity Modeling(ELFM)method is proposed to combine the generated local models into a unique and continuous global model.Finally,the resulting model inherits the features of local models and approximates a complete database for the whole design space.The validation of the proposed framework is performed to demonstrate its approximation capabilities in(A)four multi-dimensional analytical problems and(B)a practical engineering case study of constructing an F16C fighter aircraft’s aerodynamic database.Accuracy comparisons of the generated models using the proposed AMDF framework and conventional MDF approaches using a single global modeling algorithm are performed to reveal the adaptability of the proposed approach for fusing multi-fidelity data featuring non-uniform structures.Indeed,the results indicated that the proposed framework outperforms the state-of-the-art MDF approach in the cases of non-uniform data. 展开更多
关键词 Aerodynamic modeling data fusion Diverse data structure Multi-fidelity data Multi-fidelity surrogate modeling
原文传递
The fourth scientific discovery paradigm for precision medicine and healthcare:Challenges ahead 被引量:5
2
作者 Li Shen Jinwei Bai +1 位作者 Jiao Wang Bairong Shen 《Precision Clinical Medicine》 2021年第2期80-84,共5页
With the progression of modern information techniques,such as next generation sequencing(NGS),Internet of Everything(IoE)based smart sensors,and artificial intelligence algorithms,data-intensive research and applicati... With the progression of modern information techniques,such as next generation sequencing(NGS),Internet of Everything(IoE)based smart sensors,and artificial intelligence algorithms,data-intensive research and applications are emerging as the fourth paradigm for scientific discovery.However,we facemany challenges to practical application of this paradigm.In this article,10 challenges to data-intensive discovery and applications in precision medicine and healthcare are summarized and the future perspectives on next generation medicine are discussed. 展开更多
关键词 data-intensive scientific discovery the fourth paradigm biomedical data diversity precision medicine and healthcare
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部