Multi-fidelity Data Fusion(MDF)frameworks have emerged as a prominent approach to producing economical but accurate surrogate models for aerodynamic data modeling by integrating data with different fidelity levels.How...Multi-fidelity Data Fusion(MDF)frameworks have emerged as a prominent approach to producing economical but accurate surrogate models for aerodynamic data modeling by integrating data with different fidelity levels.However,most existing MDF frameworks assume a uniform data structure between sampling data sources;thus,producing an accurate solution at the required level,for cases of non-uniform data structures is challenging.To address this challenge,an Adaptive Multi-fidelity Data Fusion(AMDF)framework is proposed to produce a composite surrogate model which can efficiently model multi-fidelity data featuring non-uniform structures.Firstly,the design space of the input data with non-uniform data structures is decomposed into subdomains containing simplified structures.Secondly,different MDF frameworks and a rule-based selection process are adopted to construct multiple local models for the subdomain data.On the other hand,the Enhanced Local Fidelity Modeling(ELFM)method is proposed to combine the generated local models into a unique and continuous global model.Finally,the resulting model inherits the features of local models and approximates a complete database for the whole design space.The validation of the proposed framework is performed to demonstrate its approximation capabilities in(A)four multi-dimensional analytical problems and(B)a practical engineering case study of constructing an F16C fighter aircraft’s aerodynamic database.Accuracy comparisons of the generated models using the proposed AMDF framework and conventional MDF approaches using a single global modeling algorithm are performed to reveal the adaptability of the proposed approach for fusing multi-fidelity data featuring non-uniform structures.Indeed,the results indicated that the proposed framework outperforms the state-of-the-art MDF approach in the cases of non-uniform data.展开更多
With the progression of modern information techniques,such as next generation sequencing(NGS),Internet of Everything(IoE)based smart sensors,and artificial intelligence algorithms,data-intensive research and applicati...With the progression of modern information techniques,such as next generation sequencing(NGS),Internet of Everything(IoE)based smart sensors,and artificial intelligence algorithms,data-intensive research and applications are emerging as the fourth paradigm for scientific discovery.However,we facemany challenges to practical application of this paradigm.In this article,10 challenges to data-intensive discovery and applications in precision medicine and healthcare are summarized and the future perspectives on next generation medicine are discussed.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1A6A1A03046811).This paper was also supported by Konkuk University Researcher Fund in 2021.
文摘Multi-fidelity Data Fusion(MDF)frameworks have emerged as a prominent approach to producing economical but accurate surrogate models for aerodynamic data modeling by integrating data with different fidelity levels.However,most existing MDF frameworks assume a uniform data structure between sampling data sources;thus,producing an accurate solution at the required level,for cases of non-uniform data structures is challenging.To address this challenge,an Adaptive Multi-fidelity Data Fusion(AMDF)framework is proposed to produce a composite surrogate model which can efficiently model multi-fidelity data featuring non-uniform structures.Firstly,the design space of the input data with non-uniform data structures is decomposed into subdomains containing simplified structures.Secondly,different MDF frameworks and a rule-based selection process are adopted to construct multiple local models for the subdomain data.On the other hand,the Enhanced Local Fidelity Modeling(ELFM)method is proposed to combine the generated local models into a unique and continuous global model.Finally,the resulting model inherits the features of local models and approximates a complete database for the whole design space.The validation of the proposed framework is performed to demonstrate its approximation capabilities in(A)four multi-dimensional analytical problems and(B)a practical engineering case study of constructing an F16C fighter aircraft’s aerodynamic database.Accuracy comparisons of the generated models using the proposed AMDF framework and conventional MDF approaches using a single global modeling algorithm are performed to reveal the adaptability of the proposed approach for fusing multi-fidelity data featuring non-uniform structures.Indeed,the results indicated that the proposed framework outperforms the state-of-the-art MDF approach in the cases of non-uniform data.
基金This work was supported by the regional innovation cooperation between Sichuan and Guangxi Provinces(Grant No.2020YFQ0019)the National Natural Science Foundation of China(Grant No.32070671).
文摘With the progression of modern information techniques,such as next generation sequencing(NGS),Internet of Everything(IoE)based smart sensors,and artificial intelligence algorithms,data-intensive research and applications are emerging as the fourth paradigm for scientific discovery.However,we facemany challenges to practical application of this paradigm.In this article,10 challenges to data-intensive discovery and applications in precision medicine and healthcare are summarized and the future perspectives on next generation medicine are discussed.