Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social ...Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.展开更多
In wireless sensor networks, topology control plays an important role for data forwarding efficiency in the data gathering applications. In this paper, we present a novel topology control and data forwarding mechanism...In wireless sensor networks, topology control plays an important role for data forwarding efficiency in the data gathering applications. In this paper, we present a novel topology control and data forwarding mechanism called REMUDA, which is designed for a practical indoor parking lot management system. REMUDA forms a tree-based hierarchical network topology which brings as many nodes as possible to be leaf nodes and constructs a virtual cluster structure. Meanwhile, it takes the reliability, stability and path length into account in the tree construction process. Through an experiment in a network of 30 real sensor nodes, we evaluate the performance of REMUDA and compare it with LEPS which is also a practical routing protocol in TinyOS. Experiment results show that REMUDA can achieve better performance than LEPS.展开更多
This paper explains trajectory-based data forwarding schemes for multihop data delivery in vehicular networks where the trajectory is the GPS navigation path for driving in a road network. Nowadays, GPS-based navigati...This paper explains trajectory-based data forwarding schemes for multihop data delivery in vehicular networks where the trajectory is the GPS navigation path for driving in a road network. Nowadays, GPS-based navigation is popular with drivers either for efficient driv- ing in unfamiliar road networks or for a better route, even in familiar road networks with heavy traffic. In this paper, we describe how to take advantage of vehicle trajectories in order to design data-forwarding schemes for information exchange in vehicular networks. The design of data-forwarding schemes takes into account not only the macro-scoped mobility of vehicular traffic statistics in road net- works, but also the micro-scoped mobility of individual vehicle trajectories. This paper addresses the importance of vehicle trajectory in the design of multihop vehicle-to-infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle data forwarding schemes. First, we explain the modeling of packet delivery delay and vehicle travel delay in both a road segment and an end-to-end path in a road net- work. Second, we describe a state-of-the-art data forwarding scheme using vehicular traffic statistics for the estimation of the end-to- end delivery delay as a forwarding metric. Last, we describe two data forwarding schemes based on both vehicle trajectory and vehicu- lar traffic statistics in a privacy-preserving manner.展开更多
We show that an aggregated Interest in Named Data Networking (NDN) may fail to retrieve desired data since the Interest previously sent upstream for the same content is judged as a duplicate one and then dropped by an...We show that an aggregated Interest in Named Data Networking (NDN) may fail to retrieve desired data since the Interest previously sent upstream for the same content is judged as a duplicate one and then dropped by an upstream node due to its multipath forwarding. Furthermore, we propose NDRUDAF, a NACK based mechanism that enhances the Interest forwarding and enables Detection and fast Recovery from such Unanticipated Data Access Failure. In the NDN enhanced with NDRUDAF, the router that aggregates the Interest detects such unanticipated data access failure based on a negative acknowledgement from the upstream node that judges the Interest as a duplicate one. Then the router retransmits the Interest as soon as possible on behalf of the requester whose Interest is aggregated to fast recover from the data access failure. We qualitatively and quantitatively analyze the performance of the NDN enhanced with our proposed NDRUDAF and compare it with that of the present NDN. Our experimental results validate that NDRUDAF improves the system performance in case of such unanticipated data access failure in terms of data access delay and network resource utilization efficiency at routers.展开更多
The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent ...The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent access to intra-daily high-frequency data for two of the most liquid contracts at the Nord Pool exchange has made it possible to apply new and promising methods for analyzing volatility and correlation. The concepts of realized volatility and realized correlation are applied, and this study statistically describes the distribution (both distributional properties and temporal dependencies) of electricity forward data from 2005 to 2009. The main findings show that the logarithmic realized volatility is approximately normally distributed, while realized correlation seems not to be. Further, realized volatility and realized correlation have a long-memory feature. There also seems to be a high correlation between realized correlation and volatilities and positive relations between trading volume and realized volatility and between trading volume and realized correlation. These results are to a large extent consistent with earlier studies of stylized facts of other financial and commodity markets.展开更多
With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and conseque...With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and consequently lays foundation for operating condition on-line analysis of distribution network. In this paper, a modified back/forward sweep method, which directly uses real-time electricity consumption data acquired from the centralized meter reading system, is proposedto realize voltage analysis based on 24-hour electricity consumption data of a typical transformer district. Furthermore, the calculated line losses are verified through data collected from the energy metering of the distribution transformer, illustrating that the proposed method can be applied in analyzing voltage level and discovering unknown energy losses, which will lay foundation for on-line analysis, calculation and monitoring of power distribution network.展开更多
In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded,...In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded, quality degrades significantly and thus load shedding becomes necessary. Unlike processing overloading in the general way which is only by a feedback control (FB) loop to obtain a good and stable performance over data streams, a feedback plus feed-forward control (FFC) strategy is introduced in DSMSs, which have a good quality of service (QoS) in the aspects of miss ratio and processing delay. In this paper, a quality adaptation framework is proposed, in which the control-theory-based techniques are leveraged to adjust the application behavior with the considerations of the current system status. Compared to previous solutions, the FFC strategy achieves a good quality with a waste of fewer resources.展开更多
随着片上系统(System on Chip,SoC)复杂度和集成度的提高,其对验证效率的要求也不断提高。传统的瀑布形式的系统设计流程中,各个开发子过程顺序执行。为了将功能模块开发与系统架构验证并行开展以缩短项目的交付时间,提出了一种利用通...随着片上系统(System on Chip,SoC)复杂度和集成度的提高,其对验证效率的要求也不断提高。传统的瀑布形式的系统设计流程中,各个开发子过程顺序执行。为了将功能模块开发与系统架构验证并行开展以缩短项目的交付时间,提出了一种利用通用验证方法学(Universal Verification Methodology,UVM)验证IP(Verification IP,VIP)进行SoC外设组件快速建模的方法。使用事务级建模(Transaction-Level Modeling,TLM)模型模拟硬件行为代替未开发完成的功能模块产生数据流,使得在设计早期系统架构搭建完成后能更早地开展系统级测试,帮助评估总线架构性能和功能,提高验证效率。以网络处理器芯片中的数据转发模块为例,对SoC外设组件的建模方法进行了介绍,在系统级测试中进行了仿真验证。展开更多
无人机和无人船组成的移动自组织网络存在通信环境恶劣和网络拓扑结构变化频繁等挑战,导致网络性能变差。针对这一问题,建立以数据为中心的命名数据网络(Named Data Networking, NDN)网络架构,在此基础上提出基于深度强化学习的智能数...无人机和无人船组成的移动自组织网络存在通信环境恶劣和网络拓扑结构变化频繁等挑战,导致网络性能变差。针对这一问题,建立以数据为中心的命名数据网络(Named Data Networking, NDN)网络架构,在此基础上提出基于深度强化学习的智能数据转发策略。利用深度强化学习实时感知网络动态变化,优化数据转发策略,设计优先采样和双重Q网络算法,加快深度强化学习收敛速度。实验结果表明,该策略可以有效降低时延并提高兴趣包满足率。展开更多
基金supported by the NationalNatural Science Foundation of China(61972136)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T201410,T2020017)+1 种基金the Natural Science Foundation of Xiaogan City(XGKJ2022010095,XGKJ2022010094)the Science and Technology Research Project of Education Department of Hubei Province(No.Q20222704).
文摘Effective data communication is a crucial aspect of the Social Internet of Things(SIoT)and continues to be a significant research focus.This paper proposes a data forwarding algorithm based on Multidimensional Social Relations(MSRR)in SIoT to solve this problem.The proposed algorithm separates message forwarding into intra-and cross-community forwarding by analyzing interest traits and social connections among nodes.Three new metrics are defined:the intensity of node social relationships,node activity,and community connectivity.Within the community,messages are sent by determining which node is most similar to the sender by weighing the strength of social connections and node activity.When a node performs cross-community forwarding,the message is forwarded to the most reasonable relay community by measuring the node activity and the connection between communities.The proposed algorithm was compared to three existing routing algorithms in simulation experiments.Results indicate that the proposed algorithmsubstantially improves message delivery efficiency while lessening network overhead and enhancing connectivity and coordination in the SIoT context.
基金Supported by National Natural Science Foundation of P. R. China (60673178) National Basic Research Program of P.R. China (2006 CB 303000)
文摘In wireless sensor networks, topology control plays an important role for data forwarding efficiency in the data gathering applications. In this paper, we present a novel topology control and data forwarding mechanism called REMUDA, which is designed for a practical indoor parking lot management system. REMUDA forms a tree-based hierarchical network topology which brings as many nodes as possible to be leaf nodes and constructs a virtual cluster structure. Meanwhile, it takes the reliability, stability and path length into account in the tree construction process. Through an experiment in a network of 30 real sensor nodes, we evaluate the performance of REMUDA and compare it with LEPS which is also a practical routing protocol in TinyOS. Experiment results show that REMUDA can achieve better performance than LEPS.
基金supported by Faculty Research Fund,Sungkyunkwan University,2013 and by DGIST CPS Global Centerpartly supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea(NRF)+1 种基金funded by the Ministry of Science,ICT & Future Planning(No.2012033347)the ITR & D program of MKE/KEIT(10041244,SmartTV 2.0 Software Platform)
文摘This paper explains trajectory-based data forwarding schemes for multihop data delivery in vehicular networks where the trajectory is the GPS navigation path for driving in a road network. Nowadays, GPS-based navigation is popular with drivers either for efficient driv- ing in unfamiliar road networks or for a better route, even in familiar road networks with heavy traffic. In this paper, we describe how to take advantage of vehicle trajectories in order to design data-forwarding schemes for information exchange in vehicular networks. The design of data-forwarding schemes takes into account not only the macro-scoped mobility of vehicular traffic statistics in road net- works, but also the micro-scoped mobility of individual vehicle trajectories. This paper addresses the importance of vehicle trajectory in the design of multihop vehicle-to-infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle data forwarding schemes. First, we explain the modeling of packet delivery delay and vehicle travel delay in both a road segment and an end-to-end path in a road net- work. Second, we describe a state-of-the-art data forwarding scheme using vehicular traffic statistics for the estimation of the end-to- end delivery delay as a forwarding metric. Last, we describe two data forwarding schemes based on both vehicle trajectory and vehicu- lar traffic statistics in a privacy-preserving manner.
基金supported in part by the National Natural Science Foundation of China (No.61602114)part by the National Key Research and Development Program of China (2017YFB0801703)+1 种基金part by the CERNET Innovation Project (NGII20170406)part by Jiangsu Provincial Key Laboratory of Network and Information Security (BM2003201)
文摘We show that an aggregated Interest in Named Data Networking (NDN) may fail to retrieve desired data since the Interest previously sent upstream for the same content is judged as a duplicate one and then dropped by an upstream node due to its multipath forwarding. Furthermore, we propose NDRUDAF, a NACK based mechanism that enhances the Interest forwarding and enables Detection and fast Recovery from such Unanticipated Data Access Failure. In the NDN enhanced with NDRUDAF, the router that aggregates the Interest detects such unanticipated data access failure based on a negative acknowledgement from the upstream node that judges the Interest as a duplicate one. Then the router retransmits the Interest as soon as possible on behalf of the requester whose Interest is aggregated to fast recover from the data access failure. We qualitatively and quantitatively analyze the performance of the NDN enhanced with our proposed NDRUDAF and compare it with that of the present NDN. Our experimental results validate that NDRUDAF improves the system performance in case of such unanticipated data access failure in terms of data access delay and network resource utilization efficiency at routers.
文摘The modeling of volatility and correlation is important in order to calculate hedge ratios, value at risk estimates, CAPM (Capital Asset Pricing Model betas), derivate pricing and risk management in general. Recent access to intra-daily high-frequency data for two of the most liquid contracts at the Nord Pool exchange has made it possible to apply new and promising methods for analyzing volatility and correlation. The concepts of realized volatility and realized correlation are applied, and this study statistically describes the distribution (both distributional properties and temporal dependencies) of electricity forward data from 2005 to 2009. The main findings show that the logarithmic realized volatility is approximately normally distributed, while realized correlation seems not to be. Further, realized volatility and realized correlation have a long-memory feature. There also seems to be a high correlation between realized correlation and volatilities and positive relations between trading volume and realized volatility and between trading volume and realized correlation. These results are to a large extent consistent with earlier studies of stylized facts of other financial and commodity markets.
文摘With the development of distribution automation system, the centralized meter reading system has been adopted more and more extensively, which provides real-time electricity consumption data of end-users, and consequently lays foundation for operating condition on-line analysis of distribution network. In this paper, a modified back/forward sweep method, which directly uses real-time electricity consumption data acquired from the centralized meter reading system, is proposedto realize voltage analysis based on 24-hour electricity consumption data of a typical transformer district. Furthermore, the calculated line losses are verified through data collected from the energy metering of the distribution transformer, illustrating that the proposed method can be applied in analyzing voltage level and discovering unknown energy losses, which will lay foundation for on-line analysis, calculation and monitoring of power distribution network.
基金Supported by the National Key R&D Program of China(2016YFC1401900)the National Science Foundation of China(61173029,61672144)
文摘In data stream management systems (DSMSs), how to maintain the quality of queries is a difficult problem because both the processing cost and data arrival rates are highly unpredictable. When the system is overloaded, quality degrades significantly and thus load shedding becomes necessary. Unlike processing overloading in the general way which is only by a feedback control (FB) loop to obtain a good and stable performance over data streams, a feedback plus feed-forward control (FFC) strategy is introduced in DSMSs, which have a good quality of service (QoS) in the aspects of miss ratio and processing delay. In this paper, a quality adaptation framework is proposed, in which the control-theory-based techniques are leveraged to adjust the application behavior with the considerations of the current system status. Compared to previous solutions, the FFC strategy achieves a good quality with a waste of fewer resources.
文摘无人机和无人船组成的移动自组织网络存在通信环境恶劣和网络拓扑结构变化频繁等挑战,导致网络性能变差。针对这一问题,建立以数据为中心的命名数据网络(Named Data Networking, NDN)网络架构,在此基础上提出基于深度强化学习的智能数据转发策略。利用深度强化学习实时感知网络动态变化,优化数据转发策略,设计优先采样和双重Q网络算法,加快深度强化学习收敛速度。实验结果表明,该策略可以有效降低时延并提高兴趣包满足率。