Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial mod...Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic(e.g.,climate impact and water-related environmental catastrophe)or difficult to design and monitor in a real time(e.g.,pollutant and nutrient cycles in estuaries,soils,and sediments).Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios,including drinking water contamination.展开更多
In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf ava...In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.展开更多
Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manife...Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.展开更多
[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The str...[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The structural design information of all waist protection equipment was collected from the national Internet platform,and the data were classified and a database was established.IBM SPSS 26.0 and MATLAB 2018a were used to analyze the data and tabulate them in Tableau 2022.4.After the association rules were clarified,the data were imported into Cinema 4D R21 to create the concept contour of waist protection pillow.[Results]The average and standard deviation of the single airbag design were the highest in all groups,with an average of 0.511 and a standard deviation of 0.502.The average and standard deviation of the upper and lower dual airbags were the lowest in all groups,with an average of 0.015 and a standard deviation of 0.120;the correlation coefficient between single airbag and 120°arc stretching was 0.325,which was positively correlated with each other(P<0.01);the correlation coefficient between multiple airbags and 360°encircling fitting was 0.501,which was positively correlated with each other and had the highest correlation degree(P<0.01).[Conclusions]The single airbag design is well recognized by companies,and has received the highest attention among all brand products.While focusing on single airbag design,most brands will consider the need to add 120°arc stretching elements in product design.At the time of focusing on multiple airbag design,some brands believe that 360°encircling fitting elements need to be added to the product,and the correlation between the two is the highest among all groups.展开更多
Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.Th...Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.This study aimed to screen a novel TCM prescription against DR from patents and elucidate its medication rule and molecular mechanism using data mining,network pharmacology,molecular docking and molecular dynamics(MD)simulation.Method:TCM prescriptions for treating DR was collected from patents and a novel TCM prescription was identified using data mining.Subsequently,the mechanism of the novel TCM prescription against DR was explored by constructing a network of core TCMs-core active ingredients-core targets-core pathways.Finally,molecular docking and MD simulation were employed to validate the findings from network pharmacology.Result:The TCMs of the collected prescriptions primarily possessed bitter and cold properties with heat-clearing and supplementing effects,attributed to the liver,lung and kidney channels.Notably,a novel TCM prescription for treating DR was identified,composed of Lycii Fructus,Chrysanthemi Flos,Astragali Radix and Angelicae Sinensis Radix.Twenty core active ingredients and ten core targets of the novel TCM prescription for treating DR were screened.Moreover,the novel TCM prescription played a crucial role for treating DR by inhibiting inflammatory response,oxidative stress,retinal pigment epithelium cell apoptosis and retinal neovascularization through various pathways,such as the AGE-RAGE signaling pathway in diabetic complications and the MAPK signaling pathway.Finally,molecular docking and MD simulation demonstrated that almost all core active ingredients exhibited satisfactory binding energies to core targets.Conclusions:This study identified a novel TCM prescription and unveiled its multi-component,multi-target and multi-pathway characteristics for treating DR.These findings provide a scientific basis and novel insights into the development of drugs for DR prevention and treatment.展开更多
The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collec...The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collected data from 300 undergraduate students of Al Neelain University.The first step’s initial population placements were created using Particle Swarm Optimization(PSO).Then,using adaptive feature space search,Educational Grey Wolf Optimization(EGWO)was employed to choose the optimal attribute combination.The second stage uses the SVMclassifier to forecast classification accuracy.Different classifiers were utilized to evaluate the performance of students.According to the results,it was revealed that AI could forecast the final grades of students with an accuracy rate of 97%on the test dataset.Furthermore,the present study showed that successful students could be selected by the Decision Tree model with an efficiency rate of 87.50%and could be categorized as having equal information ratio gain after the semester.While the random forest provided an accuracy of 28%.These findings indicate the higher accuracy rate in the results when these models were implemented on the data set which provides significantly accurate results as compared to a linear regression model with accuracy(12%).The study concluded that the methodology used in this study can prove to be helpful for students and teachers in upgrading academic performance,reducing chances of failure,and taking appropriate steps at the right time to raise the standards of education.The study also motivates academics to assess and discover EDM at several other universities.展开更多
The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. Thes...The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. These factors are safety, service quality and price. Airline companies can analyze the customers in the market with a focus on price and quality and develop a business model according to their expectations. For example, business class and economy class passenger expectations are different from each other, so the service and price to be offered to them will be different. However, all customers have one common expectation and that is safety. No matter how high quality the service is or how cheap the price is, no one wants to fly with an airline or plane that is not safe. From an airline company’s point of view, an accident or breakdown of one of the company’s aircraft can cause irreparable image loss and financial damage. If we look at past examples, we see that there are many airline companies or maintenance organizations that could not recover after an accident and went bankrupt. Safety is an indispensable factor. Therefore, there is a unit in the sector called the safety management system (SMS), which collects data by taking a proactive and reactive approach. The way and purpose of the safety management system is to take a proactive approach to recognize and prevent unsafe situations before they cause accidents or breakdowns, or to take a reactive approach to find the causes of accidents and breakdowns that have occurred as a result of certain factors and to take the necessary measures to prevent the same situations from happening again in the sector. The field of data mining, which is necessary to predict the future behavior of customers in the field of marketing, is an area that marketing also values. In this study, data mining studies to ensure safety in the aviation industry and the security of customer information in marketing will be emphasized, firstly, the concept and importance of data mining will be mentioned.展开更多
In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), s...In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), such as extracting information related to people’s behaviors and interactions to analyze feelings or understand the behavior of users or groups, and many others. This extracted knowledge has a very important role in decision-making, creating and improving marketing objectives and competitive advantage, monitoring events, whether political or economic, and development in all fields. Therefore, to extract this knowledge, we need to analyze the vast amount of data found within social media using the most popular data mining techniques and applications related to social media sites.展开更多
Background:Using network pharmacology to explore the potential molecular mechanism of traditional Chinese medicine in treating polycystic ovary syndrome(PCOS)with kidney deficiency and blood stasis syndrome.Method:Col...Background:Using network pharmacology to explore the potential molecular mechanism of traditional Chinese medicine in treating polycystic ovary syndrome(PCOS)with kidney deficiency and blood stasis syndrome.Method:Collect the related literature materials of PCOS with kidney deficiency and blood stasis syndrome treated by traditional Chinese medicine in four databases in recent ten years,extract the information of prescriptions and complete the frequency analysis.Traditional Chinese Medicine Systems Pharmacology Database was used to screen out the effective components.Use Online Mendelian Inheritance in Man and other databases to screen PCOS disease targets.The intersection targets obtained by clustering prescription and PCOS disease targets were submitted to STRING database for protein-protein interaction network analysis,and Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways were analysed by Metascape.Result:There are 155 kinds of traditional Chinese medicines used in the literature.The most commonly utilized ones are Cuscutae Semen,Angelicae Sinensis Radix,and Rehmanniae Radix Praeparata.The results of the cluster analysis indicated that the plants most commonly found throughout the prescription were Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.GO results show that biological processes include cell reaction to organic nitrogen compounds and cell reaction to nitrogen compounds.The functional display of GO molecule includes cytokine receptor binding,signal receptor regulator activity and so on.Kyoto Encyclopedia of Genes and Genomes results show that the possible mechanisms of action are cancer pathway,an endocrine resistance signal pathway.Conclusion:Through data mining,the cluster prescription for PCOS with kidney deficiency and blood stasis syndrome is Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.The network pharmacology research of cluster prescription shows that the main drug components for treating PCOS with kidney deficiency and blood stasis syndrome are quercetin,kaempferol,luteolin,tanshinone IIA,etc.,which act on PTGS2,NCOA2,and other targets,and treat PCOS with kidney deficiency and blood stasis syndrome through cancer and endocrine resistance.展开更多
With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research....With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research. The emergence of real-world data studies, which align more closely with actual clinical evidence, has garnered significant attention in recent years. The following is a brief overview of the specific utilization of real-world data in drug development, which often involves large sample sizes and analyses covering a relatively diverse population without strict inclusion and exclusion criteria. Real-world data often reflects real clinical practice: treatment options are chosen according to the actual conditions and willingness of patients rather than through random assignment. Analysis based on real-world data also focuses on endpoints highly relevant to clinical benefits and the quality of life of patients. The booming big data technology supports the utilization of real-world data to accelerate new drug development, serving as an important supplement to traditional clinical trials.展开更多
Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Da...Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms,which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases.Importantly,integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile.In this review,we first summarize data mining studies utilizing datasets from the individual type of omics analysis,including epigenetics/epigenomics,transcriptomics,proteomics,metabolomics,lipidomics,and spatial omics,pertaining to Alzheimer's disease,Parkinson's disease,and multiple sclerosis.We then discuss multi-omics integration approaches,including independent biological integration and unsupervised integration methods,for more intuitive and informative interpretation of the biological data obtained across different omics layers.We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks.Finally,we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery,therapeutic development,and elucidation of disease mechanisms.We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.展开更多
The outbreak of the pandemic,caused by Coronavirus Disease 2019(COVID-19),has affected the daily activities of people across the globe.During COVID-19 outbreak and the successive lockdowns,Twitter was heavily used and...The outbreak of the pandemic,caused by Coronavirus Disease 2019(COVID-19),has affected the daily activities of people across the globe.During COVID-19 outbreak and the successive lockdowns,Twitter was heavily used and the number of tweets regarding COVID-19 increased tremendously.Several studies used Sentiment Analysis(SA)to analyze the emotions expressed through tweets upon COVID-19.Therefore,in current study,a new Artificial Bee Colony(ABC)with Machine Learning-driven SA(ABCMLSA)model is developed for conducting Sentiment Analysis of COVID-19 Twitter data.The prime focus of the presented ABCML-SA model is to recognize the sentiments expressed in tweets made uponCOVID-19.It involves data pre-processing at the initial stage followed by n-gram based feature extraction to derive the feature vectors.For identification and classification of the sentiments,the Support Vector Machine(SVM)model is exploited.At last,the ABC algorithm is applied to fine tune the parameters involved in SVM.To demonstrate the improved performance of the proposed ABCML-SA model,a sequence of simulations was conducted.The comparative assessment results confirmed the effectual performance of the proposed ABCML-SA model over other approaches.展开更多
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th...Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.展开更多
Effective identification of traffic accident-prone points can reduce accident risks and eliminate safety hazards.This paper first systematically compares the research in Chinese and foreign literature,and proposes thr...Effective identification of traffic accident-prone points can reduce accident risks and eliminate safety hazards.This paper first systematically compares the research in Chinese and foreign literature,and proposes three types of identification indicators,namely absolute,relative and comprehensive,according to different reference standards.According to the evaluation indicators and modelling methods,the current status of research and problems in identification theory and methods are systematically summarised in terms of mathematical statistics,cluster analysis,machine learning and conflict technology.The study shows that the foreign literature focuses on the innovation of data and indicators and changes from accident point safety management to road network safety management,while the research in Chinese literature focuses on the integration of multiple identification methods and theoretical innovation.Driven by big data,the identification of traffic accident-prone points has been further developed at the meso-micro scale.Morphological image processing methods are widely used,combined with GIS platforms,to accurately mine the spatial attributes and correlations of accidents.Also,considering the spatial and temporal distribution of accidents,the identification results are also transformed from regions to specific road sections and points to achieve more accurate identification.展开更多
Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models ca...Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models can be utilized for effectual rainfall prediction.With this motivation,this article develops a novel comprehensive oppositionalmoth flame optimization with deep learning for rainfall prediction(COMFO-DLRP)Technique.The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes.Primarily,data pre-processing and correlation matrix(CM)based feature selection processes are carried out.In addition,deep belief network(DBN)model is applied for the effective prediction of rainfall data.Moreover,COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning(COBL)with traditional MFO algorithm.Finally,the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model.For demonstrating the improved outcomes of the COMFO-DLRP approach,a sequence of simulations were carried out and the outcomes are assessed under distinct measures.The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques.展开更多
It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practit...It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures.Historically,numerous heuristics(e.g.,greedy search)and metaheuristics-based techniques(e.g.,evolutionary algorithm)have been created for the positive association rule in privacy preserving data mining(PPDM).When it comes to connecting seemingly unrelated diseases and drugs,negative association rules may be more informative than their positive counterparts.It is well-known that during negative association rules mining,a large number of uninteresting rules are formed,making this a difficult problem to tackle.In this research,we offer an adaptive method for negative association rule mining in vertically partitioned healthcare datasets that respects users’privacy.The applied approach dynamically determines the transactions to be interrupted for information hiding,as opposed to predefining them.This study introduces a novel method for addressing the problem of negative association rules in healthcare data mining,one that is based on the Tabu-genetic optimization paradigm.Tabu search is advantageous since it removes a huge number of unnecessary rules and item sets.Experiments using benchmark healthcare datasets prove that the discussed scheme outperforms state-of-the-art solutions in terms of decreasing side effects and data distortions,as measured by the indicator of hiding failure.展开更多
Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information.Precision agriculture uses datamining to advance agricultural developments.Many farmers are...Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information.Precision agriculture uses datamining to advance agricultural developments.Many farmers aren’t getting the most out of their land because they don’t use precision agriculture.They harvest crops without a well-planned recommendation system.Future crop production is calculated by combining environmental conditions and management behavior,yielding numerical and categorical data.Most existing research still needs to address data preprocessing and crop categorization/classification.Furthermore,statistical analysis receives less attention,despite producing more accurate and valid results.The study was conducted on a dataset about Karnataka state,India,with crops of eight parameters taken into account,namely the minimum amount of fertilizers required,such as nitrogen,phosphorus,potassium,and pH values.The research considers rainfall,season,soil type,and temperature parameters to provide precise cultivation recommendations for high productivity.The presented algorithm converts discrete numerals to factors first,then reduces levels.Second,the algorithm generates six datasets,two fromCase-1(dataset withmany numeric variables),two from Case-2(dataset with many categorical variables),and one from Case-3(dataset with reduced factor variables).Finally,the algorithm outputs a class membership allocation based on an extended version of the K-means partitioning method with lambda estimation.The presented work produces mixed-type datasets with precisely categorized crops by organizing data based on environmental conditions,soil nutrients,and geo-location.Finally,the prepared dataset solves the classification problem,leading to a model evaluation that selects the best dataset for precise crop prediction.展开更多
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri...Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning.展开更多
Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has ...Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has become highly critical.As a result,various privacy-preserving data analysis technologies have emerged.Hence,we use the randomization process to reconstruct composite data attributes accurately.Also,we use privacy measures to estimate how much deception is required to guarantee privacy.There are several viable privacy protections;however,determining which one is the best is still a work in progress.This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results.Further-more,this paper investigates the use of arbitrary nature with perturbations in privacy preservation.According to the research,arbitrary objects(most notably random matrices)have"predicted"frequency patterns.It shows how to recover crucial information from a sample damaged by a random number using an arbi-trary lattice spectral selection strategy.Thisfiltration system's conceptual frame-work posits,and extensive practicalfindings indicate that sparse data distortions preserve relatively modest privacy protection in various situations.As a result,the research framework is efficient and effective in maintaining data privacy and security.展开更多
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ...Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting.展开更多
文摘Although big data is publicly available on water quality parameters,virtual simulation has not yet been adequately adapted in environmental chemistry research.Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic(e.g.,climate impact and water-related environmental catastrophe)or difficult to design and monitor in a real time(e.g.,pollutant and nutrient cycles in estuaries,soils,and sediments).Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios,including drinking water contamination.
基金partially supported by the Foundation of State Key Laboratory of Public Big Data(No.PBD2022-01).
文摘In today’s highly competitive retail industry,offline stores face increasing pressure on profitability.They hope to improve their ability in shelf management with the help of big data technology.For this,on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior.RFM(recency,frequency,andmonetary)patternmining is a powerful tool to evaluate the value of customer behavior.However,the existing RFM patternmining algorithms do not consider the quarterly nature of goods,resulting in unreasonable shelf availability and difficulty in profit-making.To solve this problem,we propose a quarterly RFM mining algorithmfor On-shelf products named OS-RFM.Our algorithmmines the high recency,high frequency,and high monetary patterns and considers the period of the on-shelf goods in quarterly units.We conducted experiments using two real datasets for numerical and graphical analysis to prove the algorithm’s effectiveness.Compared with the state-of-the-art RFM mining algorithm,our algorithm can identify more patterns and performs well in terms of precision,recall,and F1-score,with the recall rate nearing 100%.Also,the novel algorithm operates with significantly shorter running times and more stable memory usage than existing mining algorithms.Additionally,we analyze the sales trends of products in different quarters and seasonal variations.The analysis assists businesses in maintaining reasonable on-shelf availability and achieving greater profitability.
基金supported by a grant from Hubei Key Laboratory of Diabetes and Angiopathy Program of Hubei University of Science and Technology(2020XZ10)Project of Education Commission of Hubei Province(B2022192).
文摘Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.
基金Supported by Municipal Public Welfare Science and Technology Project of Zhoushan Science and Technology Bureau,Zhejiang Province(2021C31064).
文摘[Objectives]To explore the trend of brands towards the design of waist protection products through data mining,and to provide reference for the design concept of the contour of waist protection pillow.[Methods]The structural design information of all waist protection equipment was collected from the national Internet platform,and the data were classified and a database was established.IBM SPSS 26.0 and MATLAB 2018a were used to analyze the data and tabulate them in Tableau 2022.4.After the association rules were clarified,the data were imported into Cinema 4D R21 to create the concept contour of waist protection pillow.[Results]The average and standard deviation of the single airbag design were the highest in all groups,with an average of 0.511 and a standard deviation of 0.502.The average and standard deviation of the upper and lower dual airbags were the lowest in all groups,with an average of 0.015 and a standard deviation of 0.120;the correlation coefficient between single airbag and 120°arc stretching was 0.325,which was positively correlated with each other(P<0.01);the correlation coefficient between multiple airbags and 360°encircling fitting was 0.501,which was positively correlated with each other and had the highest correlation degree(P<0.01).[Conclusions]The single airbag design is well recognized by companies,and has received the highest attention among all brand products.While focusing on single airbag design,most brands will consider the need to add 120°arc stretching elements in product design.At the time of focusing on multiple airbag design,some brands believe that 360°encircling fitting elements need to be added to the product,and the correlation between the two is the highest among all groups.
基金supported by the National Natural Science Foundation of China(Grant No.82104701)Science Fund Program for Outstanding Young Scholars in Universities of Anhui Province(Grant No.2022AH030064)+3 种基金Key Project at Central Government Level:the Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources(Grant No.2060302)Foundation of Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application(Grant No.2021KFKT10)China Agriculture Research System of MOF and MARA(Grant No.CARS-21)Talent Support Program of Anhui University of Chinese Medicine(Grant No.2020rcyb007).
文摘Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.This study aimed to screen a novel TCM prescription against DR from patents and elucidate its medication rule and molecular mechanism using data mining,network pharmacology,molecular docking and molecular dynamics(MD)simulation.Method:TCM prescriptions for treating DR was collected from patents and a novel TCM prescription was identified using data mining.Subsequently,the mechanism of the novel TCM prescription against DR was explored by constructing a network of core TCMs-core active ingredients-core targets-core pathways.Finally,molecular docking and MD simulation were employed to validate the findings from network pharmacology.Result:The TCMs of the collected prescriptions primarily possessed bitter and cold properties with heat-clearing and supplementing effects,attributed to the liver,lung and kidney channels.Notably,a novel TCM prescription for treating DR was identified,composed of Lycii Fructus,Chrysanthemi Flos,Astragali Radix and Angelicae Sinensis Radix.Twenty core active ingredients and ten core targets of the novel TCM prescription for treating DR were screened.Moreover,the novel TCM prescription played a crucial role for treating DR by inhibiting inflammatory response,oxidative stress,retinal pigment epithelium cell apoptosis and retinal neovascularization through various pathways,such as the AGE-RAGE signaling pathway in diabetic complications and the MAPK signaling pathway.Finally,molecular docking and MD simulation demonstrated that almost all core active ingredients exhibited satisfactory binding energies to core targets.Conclusions:This study identified a novel TCM prescription and unveiled its multi-component,multi-target and multi-pathway characteristics for treating DR.These findings provide a scientific basis and novel insights into the development of drugs for DR prevention and treatment.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collected data from 300 undergraduate students of Al Neelain University.The first step’s initial population placements were created using Particle Swarm Optimization(PSO).Then,using adaptive feature space search,Educational Grey Wolf Optimization(EGWO)was employed to choose the optimal attribute combination.The second stage uses the SVMclassifier to forecast classification accuracy.Different classifiers were utilized to evaluate the performance of students.According to the results,it was revealed that AI could forecast the final grades of students with an accuracy rate of 97%on the test dataset.Furthermore,the present study showed that successful students could be selected by the Decision Tree model with an efficiency rate of 87.50%and could be categorized as having equal information ratio gain after the semester.While the random forest provided an accuracy of 28%.These findings indicate the higher accuracy rate in the results when these models were implemented on the data set which provides significantly accurate results as compared to a linear regression model with accuracy(12%).The study concluded that the methodology used in this study can prove to be helpful for students and teachers in upgrading academic performance,reducing chances of failure,and taking appropriate steps at the right time to raise the standards of education.The study also motivates academics to assess and discover EDM at several other universities.
文摘The aviation industry is a sector that is developing, changing and growing every day in terms of technological and legal framework. There are generally three factors that enable airlines to hold on to the market. These factors are safety, service quality and price. Airline companies can analyze the customers in the market with a focus on price and quality and develop a business model according to their expectations. For example, business class and economy class passenger expectations are different from each other, so the service and price to be offered to them will be different. However, all customers have one common expectation and that is safety. No matter how high quality the service is or how cheap the price is, no one wants to fly with an airline or plane that is not safe. From an airline company’s point of view, an accident or breakdown of one of the company’s aircraft can cause irreparable image loss and financial damage. If we look at past examples, we see that there are many airline companies or maintenance organizations that could not recover after an accident and went bankrupt. Safety is an indispensable factor. Therefore, there is a unit in the sector called the safety management system (SMS), which collects data by taking a proactive and reactive approach. The way and purpose of the safety management system is to take a proactive approach to recognize and prevent unsafe situations before they cause accidents or breakdowns, or to take a reactive approach to find the causes of accidents and breakdowns that have occurred as a result of certain factors and to take the necessary measures to prevent the same situations from happening again in the sector. The field of data mining, which is necessary to predict the future behavior of customers in the field of marketing, is an area that marketing also values. In this study, data mining studies to ensure safety in the aviation industry and the security of customer information in marketing will be emphasized, firstly, the concept and importance of data mining will be mentioned.
文摘In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), such as extracting information related to people’s behaviors and interactions to analyze feelings or understand the behavior of users or groups, and many others. This extracted knowledge has a very important role in decision-making, creating and improving marketing objectives and competitive advantage, monitoring events, whether political or economic, and development in all fields. Therefore, to extract this knowledge, we need to analyze the vast amount of data found within social media using the most popular data mining techniques and applications related to social media sites.
基金supported by Clinical observation on the treatment of diabetic peripheral neuropathy by supplementing qi,promoting blood circulation and tonifying kidney (grant mumber YJ202324).
文摘Background:Using network pharmacology to explore the potential molecular mechanism of traditional Chinese medicine in treating polycystic ovary syndrome(PCOS)with kidney deficiency and blood stasis syndrome.Method:Collect the related literature materials of PCOS with kidney deficiency and blood stasis syndrome treated by traditional Chinese medicine in four databases in recent ten years,extract the information of prescriptions and complete the frequency analysis.Traditional Chinese Medicine Systems Pharmacology Database was used to screen out the effective components.Use Online Mendelian Inheritance in Man and other databases to screen PCOS disease targets.The intersection targets obtained by clustering prescription and PCOS disease targets were submitted to STRING database for protein-protein interaction network analysis,and Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes pathways were analysed by Metascape.Result:There are 155 kinds of traditional Chinese medicines used in the literature.The most commonly utilized ones are Cuscutae Semen,Angelicae Sinensis Radix,and Rehmanniae Radix Praeparata.The results of the cluster analysis indicated that the plants most commonly found throughout the prescription were Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.GO results show that biological processes include cell reaction to organic nitrogen compounds and cell reaction to nitrogen compounds.The functional display of GO molecule includes cytokine receptor binding,signal receptor regulator activity and so on.Kyoto Encyclopedia of Genes and Genomes results show that the possible mechanisms of action are cancer pathway,an endocrine resistance signal pathway.Conclusion:Through data mining,the cluster prescription for PCOS with kidney deficiency and blood stasis syndrome is Leonuri Herba,Lycopi Herba,Dipsaci Radix,etc.The network pharmacology research of cluster prescription shows that the main drug components for treating PCOS with kidney deficiency and blood stasis syndrome are quercetin,kaempferol,luteolin,tanshinone IIA,etc.,which act on PTGS2,NCOA2,and other targets,and treat PCOS with kidney deficiency and blood stasis syndrome through cancer and endocrine resistance.
文摘With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research. The emergence of real-world data studies, which align more closely with actual clinical evidence, has garnered significant attention in recent years. The following is a brief overview of the specific utilization of real-world data in drug development, which often involves large sample sizes and analyses covering a relatively diverse population without strict inclusion and exclusion criteria. Real-world data often reflects real clinical practice: treatment options are chosen according to the actual conditions and willingness of patients rather than through random assignment. Analysis based on real-world data also focuses on endpoints highly relevant to clinical benefits and the quality of life of patients. The booming big data technology supports the utilization of real-world data to accelerate new drug development, serving as an important supplement to traditional clinical trials.
基金supported by a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship(021207-00001)from Nanyang Technological University(NTU)Singapore and a Mistletoe Research Fellowship(022522-00001)from the Momental Foundation USA.Jialiu Zeng is supported by a Presidential Postdoctoral Fellowship(021229-00001)from NTU Singapore and an Open Fund Young Investigator Research Grant(OF-YIRG)(MOH-001147)from the National Medical Research Council(NMRC)SingaporeSu Bin Lim is supported by the National Research Foundation(NRF)of Korea(Grant Nos.:2020R1A6A1A03043539,2020M3A9D8037604,2022R1C1C1004756)a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(Grant No.:HR22C1734).
文摘Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information,with its application to neuroscience termed neuroinformatics.Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms,which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases.Importantly,integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile.In this review,we first summarize data mining studies utilizing datasets from the individual type of omics analysis,including epigenetics/epigenomics,transcriptomics,proteomics,metabolomics,lipidomics,and spatial omics,pertaining to Alzheimer's disease,Parkinson's disease,and multiple sclerosis.We then discuss multi-omics integration approaches,including independent biological integration and unsupervised integration methods,for more intuitive and informative interpretation of the biological data obtained across different omics layers.We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks.Finally,we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery,therapeutic development,and elucidation of disease mechanisms.We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.
基金The Deanship of ScientificResearch (DSR)at King Abdulaziz University,Jeddah,Saudi Arabia has funded this project,under Grant No. (FP-205-43).
文摘The outbreak of the pandemic,caused by Coronavirus Disease 2019(COVID-19),has affected the daily activities of people across the globe.During COVID-19 outbreak and the successive lockdowns,Twitter was heavily used and the number of tweets regarding COVID-19 increased tremendously.Several studies used Sentiment Analysis(SA)to analyze the emotions expressed through tweets upon COVID-19.Therefore,in current study,a new Artificial Bee Colony(ABC)with Machine Learning-driven SA(ABCMLSA)model is developed for conducting Sentiment Analysis of COVID-19 Twitter data.The prime focus of the presented ABCML-SA model is to recognize the sentiments expressed in tweets made uponCOVID-19.It involves data pre-processing at the initial stage followed by n-gram based feature extraction to derive the feature vectors.For identification and classification of the sentiments,the Support Vector Machine(SVM)model is exploited.At last,the ABC algorithm is applied to fine tune the parameters involved in SVM.To demonstrate the improved performance of the proposed ABCML-SA model,a sequence of simulations was conducted.The comparative assessment results confirmed the effectual performance of the proposed ABCML-SA model over other approaches.
基金supported by the Science and Technology Project of China Southern Power Grid(GZHKJXM20210043-080041KK52210002).
文摘Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme.
基金supported by The Fundamental Research Funds for the Central Universities(No:2022RC023).
文摘Effective identification of traffic accident-prone points can reduce accident risks and eliminate safety hazards.This paper first systematically compares the research in Chinese and foreign literature,and proposes three types of identification indicators,namely absolute,relative and comprehensive,according to different reference standards.According to the evaluation indicators and modelling methods,the current status of research and problems in identification theory and methods are systematically summarised in terms of mathematical statistics,cluster analysis,machine learning and conflict technology.The study shows that the foreign literature focuses on the innovation of data and indicators and changes from accident point safety management to road network safety management,while the research in Chinese literature focuses on the integration of multiple identification methods and theoretical innovation.Driven by big data,the identification of traffic accident-prone points has been further developed at the meso-micro scale.Morphological image processing methods are widely used,combined with GIS platforms,to accurately mine the spatial attributes and correlations of accidents.Also,considering the spatial and temporal distribution of accidents,the identification results are also transformed from regions to specific road sections and points to achieve more accurate identification.
基金the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/180/43)Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number(PNURSP2022R235)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research atUmmAl-Qura University for supporting this work by Grant Code:(22UQU4270206DSR01).
文摘Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models can be utilized for effectual rainfall prediction.With this motivation,this article develops a novel comprehensive oppositionalmoth flame optimization with deep learning for rainfall prediction(COMFO-DLRP)Technique.The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes.Primarily,data pre-processing and correlation matrix(CM)based feature selection processes are carried out.In addition,deep belief network(DBN)model is applied for the effective prediction of rainfall data.Moreover,COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning(COBL)with traditional MFO algorithm.Finally,the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model.For demonstrating the improved outcomes of the COMFO-DLRP approach,a sequence of simulations were carried out and the outcomes are assessed under distinct measures.The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques.
文摘It is crucial,while using healthcare data,to assess the advantages of data privacy against the possible drawbacks.Data from several sources must be combined for use in many data mining applications.The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures.Historically,numerous heuristics(e.g.,greedy search)and metaheuristics-based techniques(e.g.,evolutionary algorithm)have been created for the positive association rule in privacy preserving data mining(PPDM).When it comes to connecting seemingly unrelated diseases and drugs,negative association rules may be more informative than their positive counterparts.It is well-known that during negative association rules mining,a large number of uninteresting rules are formed,making this a difficult problem to tackle.In this research,we offer an adaptive method for negative association rule mining in vertically partitioned healthcare datasets that respects users’privacy.The applied approach dynamically determines the transactions to be interrupted for information hiding,as opposed to predefining them.This study introduces a novel method for addressing the problem of negative association rules in healthcare data mining,one that is based on the Tabu-genetic optimization paradigm.Tabu search is advantageous since it removes a huge number of unnecessary rules and item sets.Experiments using benchmark healthcare datasets prove that the discussed scheme outperforms state-of-the-art solutions in terms of decreasing side effects and data distortions,as measured by the indicator of hiding failure.
基金This research work was funded by the Institutional Fund Projects under Grant No.(IFPIP:959-611-1443)The authors gratefully acknowledge the technical and financial support provided by the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Data mining and analytics involve inspecting and modeling large pre-existing datasets to discover decision-making information.Precision agriculture uses datamining to advance agricultural developments.Many farmers aren’t getting the most out of their land because they don’t use precision agriculture.They harvest crops without a well-planned recommendation system.Future crop production is calculated by combining environmental conditions and management behavior,yielding numerical and categorical data.Most existing research still needs to address data preprocessing and crop categorization/classification.Furthermore,statistical analysis receives less attention,despite producing more accurate and valid results.The study was conducted on a dataset about Karnataka state,India,with crops of eight parameters taken into account,namely the minimum amount of fertilizers required,such as nitrogen,phosphorus,potassium,and pH values.The research considers rainfall,season,soil type,and temperature parameters to provide precise cultivation recommendations for high productivity.The presented algorithm converts discrete numerals to factors first,then reduces levels.Second,the algorithm generates six datasets,two fromCase-1(dataset withmany numeric variables),two from Case-2(dataset with many categorical variables),and one from Case-3(dataset with reduced factor variables).Finally,the algorithm outputs a class membership allocation based on an extended version of the K-means partitioning method with lambda estimation.The presented work produces mixed-type datasets with precisely categorized crops by organizing data based on environmental conditions,soil nutrients,and geo-location.Finally,the prepared dataset solves the classification problem,leading to a model evaluation that selects the best dataset for precise crop prediction.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number RI-44-0444.
文摘Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning.
文摘Imagine numerous clients,each with personal data;individual inputs are severely corrupt,and a server only concerns the collective,statistically essential facets of this data.In several data mining methods,privacy has become highly critical.As a result,various privacy-preserving data analysis technologies have emerged.Hence,we use the randomization process to reconstruct composite data attributes accurately.Also,we use privacy measures to estimate how much deception is required to guarantee privacy.There are several viable privacy protections;however,determining which one is the best is still a work in progress.This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results.Further-more,this paper investigates the use of arbitrary nature with perturbations in privacy preservation.According to the research,arbitrary objects(most notably random matrices)have"predicted"frequency patterns.It shows how to recover crucial information from a sample damaged by a random number using an arbi-trary lattice spectral selection strategy.Thisfiltration system's conceptual frame-work posits,and extensive practicalfindings indicate that sparse data distortions preserve relatively modest privacy protection in various situations.As a result,the research framework is efficient and effective in maintaining data privacy and security.
文摘Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting.