In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo...In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.展开更多
According to the connotation and structure of science and technology resources and some relevant data of more than 286 cities at prefecture level and above during 2001-2010, using modified method--Data Envelopment Ana...According to the connotation and structure of science and technology resources and some relevant data of more than 286 cities at prefecture level and above during 2001-2010, using modified method--Data Envelopment Analysis (DEA), science and tech- nology (S&T) resource allocation efficiency of different cities in different periods has been figured out, which, uncovers the distributional difference and change law of S&T resource allocation efficiency from the time-space dimension. Based on that, this paper has analyzed and discussed the spatial distribution pattern and evolution trend of S&T resource allocation efficiency in different cities by virtue of the Exploratory Spatial Data Analysis (ESDA). It turned out that: (1) the average of S&T resource allocation efficiency in cities at prefecture level and above has always stayed at low levels, moreover, with repeated fluctuations between high and low, which shows a decreasing trend year by year. Besides, the gap between the East and the West is widening. (2) The asymmetrical distribution of S&T resource allocation effi- ciency presents a spatial pattern of successively decreasing from Eastern China, Central China to Western China. The cities whose S&T resource allocation efficiency are at higher level and high level take on a cluster distribution, which fits well with the 23 forming urban agglomerations in China. (3) The coupling degree between S&T resource allocation efficiency and economic environment assumes a certain positive correlation, but not completely the same. The differentiation of S&T resource allocation efficiency is common in regional devel- opment, whose existence and evolution are directly or indirectly influenced by and regarded as the reflection of many elements, such as geographical location, the natural endowment and environment of S&T resources and so on. (4) In the perspective of the evolution of spatial structure, S&T resource allocation efficiency of the cities at prefecture level and above shows a notable spatial autocorrelation, which in every period presents a positive correlation. The spatial distribution of S&T resource allocation efficiency in neighboring cities seems to be similar in group, which tends to escalate stepwise. Meanwhile, the whole differentiation of geographical space has a diminishing tendency. (5) Viewed from LISA agglomeration map of S&T resource allocation efficiency in different periods, four agglomeration types have changed differently in spatial location and the range of spatial agglomeration. And the conti- nuity of S&T resource allocation efficiency in geographical space is gradually increasing.展开更多
文摘In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method.
基金Key Projects of Philosophy of the Social Science funded by the Ministry of Education,No.11JD039National Key Public Bidding Project for Soft Science Research Plan,No.2012GXS1D002National Natural Science Foundation of China,No.41001083
文摘According to the connotation and structure of science and technology resources and some relevant data of more than 286 cities at prefecture level and above during 2001-2010, using modified method--Data Envelopment Analysis (DEA), science and tech- nology (S&T) resource allocation efficiency of different cities in different periods has been figured out, which, uncovers the distributional difference and change law of S&T resource allocation efficiency from the time-space dimension. Based on that, this paper has analyzed and discussed the spatial distribution pattern and evolution trend of S&T resource allocation efficiency in different cities by virtue of the Exploratory Spatial Data Analysis (ESDA). It turned out that: (1) the average of S&T resource allocation efficiency in cities at prefecture level and above has always stayed at low levels, moreover, with repeated fluctuations between high and low, which shows a decreasing trend year by year. Besides, the gap between the East and the West is widening. (2) The asymmetrical distribution of S&T resource allocation effi- ciency presents a spatial pattern of successively decreasing from Eastern China, Central China to Western China. The cities whose S&T resource allocation efficiency are at higher level and high level take on a cluster distribution, which fits well with the 23 forming urban agglomerations in China. (3) The coupling degree between S&T resource allocation efficiency and economic environment assumes a certain positive correlation, but not completely the same. The differentiation of S&T resource allocation efficiency is common in regional devel- opment, whose existence and evolution are directly or indirectly influenced by and regarded as the reflection of many elements, such as geographical location, the natural endowment and environment of S&T resources and so on. (4) In the perspective of the evolution of spatial structure, S&T resource allocation efficiency of the cities at prefecture level and above shows a notable spatial autocorrelation, which in every period presents a positive correlation. The spatial distribution of S&T resource allocation efficiency in neighboring cities seems to be similar in group, which tends to escalate stepwise. Meanwhile, the whole differentiation of geographical space has a diminishing tendency. (5) Viewed from LISA agglomeration map of S&T resource allocation efficiency in different periods, four agglomeration types have changed differently in spatial location and the range of spatial agglomeration. And the conti- nuity of S&T resource allocation efficiency in geographical space is gradually increasing.