Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimila...Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation(DA) and model output statistics(MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here,a one-month air quality forecast with the Weather Research and Forecasting-Chemistry(WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational(3 DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3 DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3 DVar DA in improving the operational forecasting ability of WRF-Chem.展开更多
The background error covariance plays an important role in modern data assimilation and analysis systems by determining the spatial spreading of information in the data. A novel method based on model output is propose...The background error covariance plays an important role in modern data assimilation and analysis systems by determining the spatial spreading of information in the data. A novel method based on model output is proposed to estimate background error covariance for use in Optimum Interpolation. At every model level, anisotropic correlation scales are obtained that give a more detailed description of the spatial correlation structure. Furthermore, the impact of the background field itself is included in the background error covariance. The methodology of the estimation is presented and the structure of the covariance is examined. The results of 20-year assimilation experiments are compared with observations from TOGA-TAO (The Tropical Ocean-Global Atmosphere-Tropical Atmosphere Ocean) array and other analysis data.展开更多
In view of the extensive growth of China's steel production in recent years, this paper analyzed the industrial development background and economic geography theory, and discussed the possible spatial interaction ...In view of the extensive growth of China's steel production in recent years, this paper analyzed the industrial development background and economic geography theory, and discussed the possible spatial interaction mechanism. Based on panel data of China's inter-provincial steel output from 2001 to 2015, using spatial econometric model, this paper also explored whether China's provincial steel production shows material orientation, market orientation and traffic orientation, and isolated spatial interactions of interprovincial steel output. The results showed that the inter-provincial steel production in China did show both material orientation, market orientation and traffic orientation and that there was a significant negative spatial interaction, indicating that there might be strong competition and a crowing-out effect between neighboring provinces, and that the smaller the spatial scope, the more significant the spatial interactions of steel production.展开更多
This paper investigates the problem of global output feedback stabilization for a class of feedforward nonlinear systems via linear sampled-data control. To solve the problem, we first construct a linear sampled-data ...This paper investigates the problem of global output feedback stabilization for a class of feedforward nonlinear systems via linear sampled-data control. To solve the problem, we first construct a linear sampled-data observer and controller. Then, a scaling gain is introduced into the proposed observer and controller. Finally, we use the sampled-data output feedback domination approach to find the explicit formula for choosing the scaling gain and the sampling period which renders the closed-loop system globally asymptotically stable. A simulation example is given to demonstrate the effectiveness of the proposed design procedure.展开更多
Cross-efficiency evaluation is recognized as an effective way of efficiency assessment for a set of decision making units (DMUs) in the framework of data envelopment analysis (DEA). It has been generally suggested tha...Cross-efficiency evaluation is recognized as an effective way of efficiency assessment for a set of decision making units (DMUs) in the framework of data envelopment analysis (DEA). It has been generally suggested that secondary goals be introduced for cross-efficiency evaluation owing to the non-uniqueness of optimal solutions in self-evaluation. This paper develops a variety of secondary goals in the spirit of promoting balance in the output efficiencies of the DMU under evaluation. The proposed models attempt to make each output contribute as equally as possible to the self-evaluated efficiency. In this way, the weight flexibility can for one thing be reduced by the introduced secondary goals with selections from alternate optimal solutions, in addition to counting on the dilution of flexibility in the subsequent peer-evaluation. The proposed approach might be applicable to evaluation problems in which multiple outputs are considered important and balance is encouraged to put all dimensions into sufficient use. The effectiveness of the proposed approach and its comparisons with some relevant secondary goals are illustrated empirically using numerical examples.展开更多
基金supported by the State Key Research and Development Program (Grant Nos. 2017YFC0209803, 2016YFC0208504, 2016YFC0203303 and 2017YFC0210106)the National Natural Science Foundation of China (Grant Nos. 91544230, 41575145, 41621005 and 41275128)
文摘Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation(DA) and model output statistics(MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here,a one-month air quality forecast with the Weather Research and Forecasting-Chemistry(WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational(3 DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3 DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3 DVar DA in improving the operational forecasting ability of WRF-Chem.
基金supported by the National Key Program for Developing Basic Sciences(G1999032801)the National Natural Science Foundation of China(Grant No.40005007,40233033,and 40221503)
文摘The background error covariance plays an important role in modern data assimilation and analysis systems by determining the spatial spreading of information in the data. A novel method based on model output is proposed to estimate background error covariance for use in Optimum Interpolation. At every model level, anisotropic correlation scales are obtained that give a more detailed description of the spatial correlation structure. Furthermore, the impact of the background field itself is included in the background error covariance. The methodology of the estimation is presented and the structure of the covariance is examined. The results of 20-year assimilation experiments are compared with observations from TOGA-TAO (The Tropical Ocean-Global Atmosphere-Tropical Atmosphere Ocean) array and other analysis data.
文摘In view of the extensive growth of China's steel production in recent years, this paper analyzed the industrial development background and economic geography theory, and discussed the possible spatial interaction mechanism. Based on panel data of China's inter-provincial steel output from 2001 to 2015, using spatial econometric model, this paper also explored whether China's provincial steel production shows material orientation, market orientation and traffic orientation, and isolated spatial interactions of interprovincial steel output. The results showed that the inter-provincial steel production in China did show both material orientation, market orientation and traffic orientation and that there was a significant negative spatial interaction, indicating that there might be strong competition and a crowing-out effect between neighboring provinces, and that the smaller the spatial scope, the more significant the spatial interactions of steel production.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61104068, 61273119) Natural Science Foundation of Jiangsu Province (No. BK2010200)+1 种基金 China Postdoctoral Science Foundation Founded Project (No. 2012M511176) the Fundamental Research Funds for the Central Universities (No. 2242013R30006).
文摘This paper investigates the problem of global output feedback stabilization for a class of feedforward nonlinear systems via linear sampled-data control. To solve the problem, we first construct a linear sampled-data observer and controller. Then, a scaling gain is introduced into the proposed observer and controller. Finally, we use the sampled-data output feedback domination approach to find the explicit formula for choosing the scaling gain and the sampling period which renders the closed-loop system globally asymptotically stable. A simulation example is given to demonstrate the effectiveness of the proposed design procedure.
文摘Cross-efficiency evaluation is recognized as an effective way of efficiency assessment for a set of decision making units (DMUs) in the framework of data envelopment analysis (DEA). It has been generally suggested that secondary goals be introduced for cross-efficiency evaluation owing to the non-uniqueness of optimal solutions in self-evaluation. This paper develops a variety of secondary goals in the spirit of promoting balance in the output efficiencies of the DMU under evaluation. The proposed models attempt to make each output contribute as equally as possible to the self-evaluated efficiency. In this way, the weight flexibility can for one thing be reduced by the introduced secondary goals with selections from alternate optimal solutions, in addition to counting on the dilution of flexibility in the subsequent peer-evaluation. The proposed approach might be applicable to evaluation problems in which multiple outputs are considered important and balance is encouraged to put all dimensions into sufficient use. The effectiveness of the proposed approach and its comparisons with some relevant secondary goals are illustrated empirically using numerical examples.