In this paper,a dynamic linear detecting method,that the non-linear coefficient NL% was led and the non-linearity of data were estimated continuously and dynamically and determined when NL% exceeded reference value (...In this paper,a dynamic linear detecting method,that the non-linear coefficient NL% was led and the non-linearity of data were estimated continuously and dynamically and determined when NL% exceeded reference value (5%),was used for data processing and could solve the problem caused by the phenomenon of substrate depleting occurred following the redox reaction in portable blood sugar analyzer.By contrast to the conventional end-point method,the dynamic linear detecting method is based on multipoint data collecting.Experiments of measuring the calibration glucose solution with 8 various concentrations from 50 mg/dl to 400 mg/dl were carried out with the analyzer developed by our group.The linear regression curve,whose correlation for the data was 0.9995 and the residual was 2.8080,were obtained.The obtained correlation,residual, and the computation workload are all fit for the portable blood sugar analyzer.展开更多
To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore...To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.展开更多
The Extreme Ultraviolet Camera (EUVC) onboard the Chang'e-3 (CE-3) lander is used to observe the structure and dynamics of Earth's plasmasphere from the Moon. By detecting the resonance line emission of helium i...The Extreme Ultraviolet Camera (EUVC) onboard the Chang'e-3 (CE-3) lander is used to observe the structure and dynamics of Earth's plasmasphere from the Moon. By detecting the resonance line emission of helium ions (He+) at 30.4 nm, the EUVC images the entire plasmasphere with a time resolution of 10 min and a spatial resolution of about 0.1 Earth radius (RE) in a single frame. We first present details about the data processing from EUVC and the data acquisition in the commissioning phase, and then report some initial results, which reflect the basic features of the plas- masphere well. The photon count and emission intensity of EUVC are consistent with previous observations and models, which indicate that the EUVC works normally and can provide high quality data for future studies.展开更多
The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1...The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.展开更多
The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from whi...The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.展开更多
The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the i...The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.展开更多
The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomal...The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomalies from lateral anomalies controlled by faults; and (3) how to eliminate interferences. These uncertainties are serious obstacles for the wide acceptance and use of geochemical techniques in hydrocarbon exploration. In this paper, the features of hydrocarbon anomalies were analyzed based on the micro migration mechanisms. In most cases, there are two anomalous populations or point groups, which are produced by two distinct mechanisms: (1) a population that directly reflects oil and gas fields, and (2) one that is related to structures such as faults. Statistical studies show that background anomalous populations and the boundaries between them can be described by the population means, prior probabilities, which are the proportions of population sizes, and covariance matrices, when background and anomalous populations have normal distributions. When this normality condition is met, a series of formulas can be derived. The method is designed on the basis of these allows: (1) univariate anomaly recognition, (2) elimination of interferences, (3) multivariate anomaly recognition, and (4) multivariate anomaly combination which depicts a more representative picture of morphology of the anomalous target than individual anomalies. The univariate and multivariate anomaly recognition can not only separate anomalies from background objectively, but also simultaneously distinguish the two types of anomalies objectively. This method was applied to the hydrocarbon data in Yangshuiwu region, Hebei Province. The interferences from regional variation of background were eliminated, and the interpretation uncertainty was reduced greatly as the anomalous populations were separated. The method was also used in Daxing region within the confines of Beijing City, and Aershan and Jiergalangtu regions in Inner Mongolia.展开更多
In order to increase the exploration depth of Rayleigh wave, new idea that dif-ferent from the former principles in data acquisition was applied. Suitable data acquisition parameter was given out on the basis of large...In order to increase the exploration depth of Rayleigh wave, new idea that dif-ferent from the former principles in data acquisition was applied. Suitable data acquisition parameter was given out on the basis of large amount of experiments. By reducing the group interval, the low frequency signal are enhanced instead of been attenuated. Fur-thermore, to solve the problem that the precision of Rayleigh wave exploration method count much to the signal-to-noise ratio, some preprocessing methods were put forward. By using zero shift rectifying, digital F-K filtering and cutting, noises can be effectively eliminated.展开更多
The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission re- spectively. They both use a Bayer color filter array c...The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission re- spectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image qual- ity has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncor- rected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively.展开更多
The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothi...The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.展开更多
文摘In this paper,a dynamic linear detecting method,that the non-linear coefficient NL% was led and the non-linearity of data were estimated continuously and dynamically and determined when NL% exceeded reference value (5%),was used for data processing and could solve the problem caused by the phenomenon of substrate depleting occurred following the redox reaction in portable blood sugar analyzer.By contrast to the conventional end-point method,the dynamic linear detecting method is based on multipoint data collecting.Experiments of measuring the calibration glucose solution with 8 various concentrations from 50 mg/dl to 400 mg/dl were carried out with the analyzer developed by our group.The linear regression curve,whose correlation for the data was 0.9995 and the residual was 2.8080,were obtained.The obtained correlation,residual, and the computation workload are all fit for the portable blood sugar analyzer.
基金Supported by the National Natural Science Foundation of China
文摘To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.
文摘The Extreme Ultraviolet Camera (EUVC) onboard the Chang'e-3 (CE-3) lander is used to observe the structure and dynamics of Earth's plasmasphere from the Moon. By detecting the resonance line emission of helium ions (He+) at 30.4 nm, the EUVC images the entire plasmasphere with a time resolution of 10 min and a spatial resolution of about 0.1 Earth radius (RE) in a single frame. We first present details about the data processing from EUVC and the data acquisition in the commissioning phase, and then report some initial results, which reflect the basic features of the plas- masphere well. The photon count and emission intensity of EUVC are consistent with previous observations and models, which indicate that the EUVC works normally and can provide high quality data for future studies.
文摘The Chang'e-3 (CE-3) mission is China's first exploration mission on the surface of the Moon that uses a lander and a rover. Eight instruments that form the scientific payloads have the following objectives: (1) investigate the morphological features and geological structures at the landing site; (2) integrated in-situ analysis of minerals and chemical compositions; (3) integrated exploration of the structure of the lunar interior; (4) exploration of the lunar-terrestrial space environment, lunar sur- face environment and acquire Moon-based ultraviolet astronomical observations. The Ground Research and Application System (GRAS) is in charge of data acquisition and pre-processing, management of the payload in orbit, and managing the data products and their applications. The Data Pre-processing Subsystem (DPS) is a part of GRAS. The task of DPS is the pre-processing of raw data from the eight instruments that are part of CE-3, including channel processing, unpacking, package sorting, calibration and correction, identification of geographical location, calculation of probe azimuth angle, probe zenith angle, solar azimuth angle, and solar zenith angle and so on, and conducting quality checks. These processes produce Level 0, Level 1 and Level 2 data. The computing platform of this subsystem is comprised of a high-performance computing cluster, including a real-time subsystem used for processing Level 0 data and a post-time subsystem for generating Level 1 and Level 2 data. This paper de- scribes the CE-3 data pre-processing method, the data pre-processing subsystem, data classification, data validity and data products that are used for scientific studies.
基金supported by the National Natural Science Foundation of China (Grant No. 11173038)
文摘The microwave radiometer (MRM) onboard the Chang' E-1 (CE-I) lu- nar orbiter is a 4-frequency microwave radiometer, and it is mainly used to obtain the brightness temperature (TB) of the lunar surface, from which the thickness, temperature, dielectric constant and other related properties of the lunar regolith can be derived. The working mode of the CE-1 MRM, the ground calibration (including the official calibration coefficients), as well as the acquisition and processing of the raw data are introduced. Our data analysis shows that TB increases with increasing frequency, decreases towards the lunar poles and is significantly affected by solar illumination. Our analysis also reveals that the main uncertainty in TB comes from ground calibration.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11173038 and 11103022)the Tsinghua University Initiative Scientific Research Program (Grant No. 20111081102)
文摘The hard X-ray modulation telescope (HXMT) mission is mainly devoted to performing an all-sky survey at 1- 250 keV with both high sensitivity and high spatial resolution. The observed data reduction as well as the image reconstruction for HXMT can be achieved by using the direct demodulation method (DDM). However the original DDM is too computationally expensive for multi-dimensional data with high resolution to be employed for HXMT data. We propose an accelerated direct demodulation method especially adapted for data from HXMT. Simulations are also presented to demonstrate this method.
文摘The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomalies from lateral anomalies controlled by faults; and (3) how to eliminate interferences. These uncertainties are serious obstacles for the wide acceptance and use of geochemical techniques in hydrocarbon exploration. In this paper, the features of hydrocarbon anomalies were analyzed based on the micro migration mechanisms. In most cases, there are two anomalous populations or point groups, which are produced by two distinct mechanisms: (1) a population that directly reflects oil and gas fields, and (2) one that is related to structures such as faults. Statistical studies show that background anomalous populations and the boundaries between them can be described by the population means, prior probabilities, which are the proportions of population sizes, and covariance matrices, when background and anomalous populations have normal distributions. When this normality condition is met, a series of formulas can be derived. The method is designed on the basis of these allows: (1) univariate anomaly recognition, (2) elimination of interferences, (3) multivariate anomaly recognition, and (4) multivariate anomaly combination which depicts a more representative picture of morphology of the anomalous target than individual anomalies. The univariate and multivariate anomaly recognition can not only separate anomalies from background objectively, but also simultaneously distinguish the two types of anomalies objectively. This method was applied to the hydrocarbon data in Yangshuiwu region, Hebei Province. The interferences from regional variation of background were eliminated, and the interpretation uncertainty was reduced greatly as the anomalous populations were separated. The method was also used in Daxing region within the confines of Beijing City, and Aershan and Jiergalangtu regions in Inner Mongolia.
文摘In order to increase the exploration depth of Rayleigh wave, new idea that dif-ferent from the former principles in data acquisition was applied. Suitable data acquisition parameter was given out on the basis of large amount of experiments. By reducing the group interval, the low frequency signal are enhanced instead of been attenuated. Fur-thermore, to solve the problem that the precision of Rayleigh wave exploration method count much to the signal-to-noise ratio, some preprocessing methods were put forward. By using zero shift rectifying, digital F-K filtering and cutting, noises can be effectively eliminated.
基金Supported by the National Natural Science Foundation of China
文摘The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission re- spectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image qual- ity has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncor- rected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively.
基金Sponsored by the Natural Science Fundation of Jiangxi Province(Grant No.20114BAB211026 and 20122BAB201028)the Open Science Fund from Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology(Grant No.2010RGET11)
文摘The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.