One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelli...One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.展开更多
Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitatio...Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitations in practice. The burgeoning era of big data is in uencing the process industries tremendously, providing unprecedented opportunities to achieve smart manufacturing. This kind of manufacturing requires machines to not only be capable of relieving humans from intensive physical work, but also be effective in taking on intellectual labor and even producing innovations on their own. To attain this goal, data analytics and machine learning are indispensable. In this paper, we review recent advances in data analytics and machine learning applied to the monitoring, control, and optimization of industrial processes, paying particular attention to the interpretability and functionality of machine learning mod- els. By analyzing the gap between practical requirements and the current research status, promising future research directions are identi ed.展开更多
This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model need...This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model needs less capacity. Practice proved that the method issimple, calculation is easy, and results are exact.展开更多
Today’s world is a data-driven one,with data being produced in vast amounts as a result of the rapid growth of technology that permeates every aspect of our lives.New data processing techniques must be developed and ...Today’s world is a data-driven one,with data being produced in vast amounts as a result of the rapid growth of technology that permeates every aspect of our lives.New data processing techniques must be developed and refined over time to gain meaningful insights from this vast continuous volume of produced data in various forms.Machine learning technologies provide promising solutions and potential methods for processing large quantities of data and gaining value from it.This study conducts a literature review on the application of machine learning techniques in big data processing.It provides a general overview of machine learning algorithms and techniques,a brief introduction to big data,and a discussion of related works that have used machine learning techniques in a variety of sectors to process big amounts of data.The study also discusses the challenges and issues associated with the usage of machine learning for big data.展开更多
The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image ar...The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing.展开更多
Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C...Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.展开更多
With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning te...With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.展开更多
Digital factory technology is an advanced manufacturing technology served as to establish a bridge between the process of product development and manufacturing.In terms of application for digital factory technology in...Digital factory technology is an advanced manufacturing technology served as to establish a bridge between the process of product development and manufacturing.In terms of application for digital factory technology in machining,especially in machining of a complicated part such as a cylinder body part,a concept of digital process planning and its framework are proposed.Its components including machining domain knowledge model,machining knowledge base,machining resource base and process planning system are studied.A machining knowledge model in tree form and an object-driven knowledge reasoning mechanism are used for machining knowledge base.The process planning system is a user interface that leads a planner to finish the planning process.A case about a cylinder head part is given to demonstrate how the platform works.The framework of digital process planning is the foundation of some intelligent CAPP systems and helps to production line planning.展开更多
This paper introduced a welding machine for GMAW using digital controlling method based on DSP (Digital Signal Process). By means of flexible programming according to welding technologies and experiences the suitable ...This paper introduced a welding machine for GMAW using digital controlling method based on DSP (Digital Signal Process). By means of flexible programming according to welding technologies and experiences the suitable characteristics of welding machine, such as line compensation, welding voltage and current feedback, wire-feed driving, SCR trigging and so on, can be controlled and self-adjusted using digital signals. Through the designing based on DSP it is put out that the traditional hardware of control circuit is decreased greatly which can enhance the stability and reliability of welding machine. Finally, the welding experiment using CO 2 shielding gas proves that the welding process is stable.展开更多
In this paper, I described the methods that I used for the creation of Xlets, which are Java applets that are developed for the IDTV environment;and the methods for online data retrieval and processing that I utilized...In this paper, I described the methods that I used for the creation of Xlets, which are Java applets that are developed for the IDTV environment;and the methods for online data retrieval and processing that I utilized in these Xlets. The themes that I chose for the Xlets of the IDTV applications are Earthquake and Tsunami Early Warning;Recent Seismic Activity Report;and Emergency Services. The online data regarding the Recent Seismic Activity Report application are provided by the Kandilli Observatory and Earthquake Research Institute (KOERI) of Bogazici University in Istanbul;while the online data for the Earthquake and Tsunami Early Warning and the Emergency Services applications are provided by the Godoro website which I used for storing (and retrieving by the Xlets) the earthquake and tsunami early warning simulation data, and the DVB network subscriber data (such as name and address information) for utilizing in the Emergency Services (Police, Ambulance and Fire Department) application. I have focused on the methodologies to use digital television as an efficient medium to convey timely and useful information regarding seismic warning data to the public, which forms the main research topic of this paper.展开更多
In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framewor...In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.展开更多
Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial express...Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial expressions and gestures. Among these various ways of expressing the emotion, the written method is a challenging task to extract the emotions, as the data is in the form of textual dat. Finding the different kinds of emotions is also a tedious task as it requires a lot of pre preparations of the textual data taken for the research. This research work is carried out to analyse and extract the emotions hidden in text data. The text data taken for the analysis is from the social media dataset. Using the raw text data directly from the social media will not serve the purpose. Therefore, the text data has to be pre-processed and then utilised for further processing. Pre-processing makes the text data more efficient and would infer valuable insights of the emotions hidden in it. The preprocessing steps also help to manage the text data for identifying the emotions conveyed in the text. This work proposes to deduct the emotions taken from the social media text data by applying the machine learning algorithm. Finally, the usefulness of the emotions is suggested for various stake holders, to find the attitude of individuals at that moment, the data is produced. .展开更多
The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured d...The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.展开更多
The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical ...The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.展开更多
When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of mate...When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.展开更多
To realize a hyperconnected smart society with high productivity,advances in flexible sensing technology are highly needed.Nowadays,flexible sensing technology has witnessed improvements in both the hardware performan...To realize a hyperconnected smart society with high productivity,advances in flexible sensing technology are highly needed.Nowadays,flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device’s software.Significant research efforts have been devoted to improving materials,sensing mechanism,and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology.Meanwhile,advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors.Machine learning(ML)as an important branch of artificial intelligence can efficiently handle such complex data,which can be multi-dimensional and multi-faceted,thus providing a powerful tool for easy interpretation of sensing data.In this review,the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented.Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated,which includes health monitoring,human-machine interfaces,object/surface recognition,pressure prediction,and human posture/motion identification.Finally,the advantages,challenges,and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed.These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.展开更多
This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine ...This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine learning in cloud infrastructures,artificial intelligence techniques for big data analytics in cloud environments,and federated learning cloud systems are elucidated.Additionally,reinforcement learning,which is a novel technique that allows large cloud-based data centers,to allocate more energy-efficient resources is examined.Moreover,we propose an architecture that attempts to combine the features offered by several cloud providers to achieve an energy-efficient industrial IoT-based big data management framework(EEIBDM)established outside of every user in the cloud.IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-peratures.Furthermore,we propose an algorithm for determining the energy consumption of the infrastructure by evaluating the EEIBDM framework.Finally,future directions for the expansion of this research are discussed.展开更多
Digital factory technology is a research focus in academe and industry,which is an advanced manufacturing tech- nology that is proposed to bridge product development and manufacturing.For applying digital factory tech...Digital factory technology is a research focus in academe and industry,which is an advanced manufacturing tech- nology that is proposed to bridge product development and manufacturing.For applying digital factory technology in machining domain,a concept of digital process planning and its framework are suggested,its components including machining domain knowledge model,machining knowledge base,machining resource base and process planning system are studied.The framework of digital process planning is of value for implementing digital factory technology in machining industry.展开更多
Machine learning research and applications in fusion plasma experiments are one of the main subjects on J-TEXT.Since 2013,various kinds of traditional machine learning,as well as deep learning methods have been applie...Machine learning research and applications in fusion plasma experiments are one of the main subjects on J-TEXT.Since 2013,various kinds of traditional machine learning,as well as deep learning methods have been applied to fusion plasma experiments.Further applications in the real-time experimental environment have proved the feasibility and effectiveness of the methods.For disruption prediction,we started by predicting disruptions of limited classes with a short warning time that could not meet the requirements of the mitigation system.After years of study,nowadays disruption prediction methods on J-TEXT are able to predict all kinds of disruptions with a high success rate and long enough warning time.Furthermore,cross-device disruption prediction methods have obtained promising results.Interpretable analysis of the models are studied.For diagnostics data processing,efforts have been made to reduce manual work in processing and to increase the robustness of the diagnostic system.Models based on both traditional machine learning and deep learning have been applied to real-time experimental environments.The models have been cooperating with the plasma control system and other systems,to make joint decisions to further support the experiments.展开更多
To improve the detection rate and lower down the false positive rate in intrusion detection system, dimensionality reduction is widely used in the intrusion detection system. For this purpose, a data processing (DP)...To improve the detection rate and lower down the false positive rate in intrusion detection system, dimensionality reduction is widely used in the intrusion detection system. For this purpose, a data processing (DP) with support vector machine (SVM) was built. Different from traditiona/ly identifying the redundant data before purging the audit data by expert knowledge or utilizing different kinds of subsets of the available 41-connection attributes to build a classifier, the proposed strategy first removes the attributes whose correlation with another attribute exceeds a threshold, and then classifies two sequence samples as one class while removing either of the two samples whose similarity exceeds a threshold. The results of performance experiments showed that the strategy of DP and SVM is superior to the other existing data reduction strategies ( e. g. , audit reduction, rule extraction, and feature selection), and that the detection model based on DP and SVM outperforms those based on data mining, soft computing, and hierarchical principal component analysis neural networks.展开更多
文摘One of the biggest dangers to society today is terrorism, where attacks have become one of the most significantrisks to international peace and national security. Big data, information analysis, and artificial intelligence (AI) havebecome the basis for making strategic decisions in many sensitive areas, such as fraud detection, risk management,medical diagnosis, and counter-terrorism. However, there is still a need to assess how terrorist attacks are related,initiated, and detected. For this purpose, we propose a novel framework for classifying and predicting terroristattacks. The proposed framework posits that neglected text attributes included in the Global Terrorism Database(GTD) can influence the accuracy of the model’s classification of terrorist attacks, where each part of the datacan provide vital information to enrich the ability of classifier learning. Each data point in a multiclass taxonomyhas one or more tags attached to it, referred as “related tags.” We applied machine learning classifiers to classifyterrorist attack incidents obtained from the GTD. A transformer-based technique called DistilBERT extracts andlearns contextual features from text attributes to acquiremore information from text data. The extracted contextualfeatures are combined with the “key features” of the dataset and used to perform the final classification. Thestudy explored different experimental setups with various classifiers to evaluate the model’s performance. Theexperimental results show that the proposed framework outperforms the latest techniques for classifying terroristattacks with an accuracy of 98.7% using a combined feature set and extreme gradient boosting classifier.
文摘Safe, ef cient, and sustainable operations and control are primary objectives in industrial manufacturing processes. State-of-the-art technologies heavily rely on human intervention, thereby showing apparent limitations in practice. The burgeoning era of big data is in uencing the process industries tremendously, providing unprecedented opportunities to achieve smart manufacturing. This kind of manufacturing requires machines to not only be capable of relieving humans from intensive physical work, but also be effective in taking on intellectual labor and even producing innovations on their own. To attain this goal, data analytics and machine learning are indispensable. In this paper, we review recent advances in data analytics and machine learning applied to the monitoring, control, and optimization of industrial processes, paying particular attention to the interpretability and functionality of machine learning mod- els. By analyzing the gap between practical requirements and the current research status, promising future research directions are identi ed.
文摘This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model needs less capacity. Practice proved that the method issimple, calculation is easy, and results are exact.
基金This work was supported by the Deanship of Scientific Research at Qassim University.
文摘Today’s world is a data-driven one,with data being produced in vast amounts as a result of the rapid growth of technology that permeates every aspect of our lives.New data processing techniques must be developed and refined over time to gain meaningful insights from this vast continuous volume of produced data in various forms.Machine learning technologies provide promising solutions and potential methods for processing large quantities of data and gaining value from it.This study conducts a literature review on the application of machine learning techniques in big data processing.It provides a general overview of machine learning algorithms and techniques,a brief introduction to big data,and a discussion of related works that have used machine learning techniques in a variety of sectors to process big amounts of data.The study also discusses the challenges and issues associated with the usage of machine learning for big data.
文摘The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing.
基金support of the studies is from the National Major Scientific and Technological Special Project for "Development and comprehensive verification of complete products of open high-end CNC system, servo device and motor" (2012ZX04001012)
文摘Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.
基金supported by the National Natural Science Foundation of China(No.U1960202)。
文摘With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.
文摘Digital factory technology is an advanced manufacturing technology served as to establish a bridge between the process of product development and manufacturing.In terms of application for digital factory technology in machining,especially in machining of a complicated part such as a cylinder body part,a concept of digital process planning and its framework are proposed.Its components including machining domain knowledge model,machining knowledge base,machining resource base and process planning system are studied.A machining knowledge model in tree form and an object-driven knowledge reasoning mechanism are used for machining knowledge base.The process planning system is a user interface that leads a planner to finish the planning process.A case about a cylinder head part is given to demonstrate how the platform works.The framework of digital process planning is the foundation of some intelligent CAPP systems and helps to production line planning.
文摘This paper introduced a welding machine for GMAW using digital controlling method based on DSP (Digital Signal Process). By means of flexible programming according to welding technologies and experiences the suitable characteristics of welding machine, such as line compensation, welding voltage and current feedback, wire-feed driving, SCR trigging and so on, can be controlled and self-adjusted using digital signals. Through the designing based on DSP it is put out that the traditional hardware of control circuit is decreased greatly which can enhance the stability and reliability of welding machine. Finally, the welding experiment using CO 2 shielding gas proves that the welding process is stable.
文摘In this paper, I described the methods that I used for the creation of Xlets, which are Java applets that are developed for the IDTV environment;and the methods for online data retrieval and processing that I utilized in these Xlets. The themes that I chose for the Xlets of the IDTV applications are Earthquake and Tsunami Early Warning;Recent Seismic Activity Report;and Emergency Services. The online data regarding the Recent Seismic Activity Report application are provided by the Kandilli Observatory and Earthquake Research Institute (KOERI) of Bogazici University in Istanbul;while the online data for the Earthquake and Tsunami Early Warning and the Emergency Services applications are provided by the Godoro website which I used for storing (and retrieving by the Xlets) the earthquake and tsunami early warning simulation data, and the DVB network subscriber data (such as name and address information) for utilizing in the Emergency Services (Police, Ambulance and Fire Department) application. I have focused on the methodologies to use digital television as an efficient medium to convey timely and useful information regarding seismic warning data to the public, which forms the main research topic of this paper.
文摘In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.
文摘Emotion represents the feeling of an individual in a given situation. There are various ways to express the emotions of an individual. It can be categorized into verbal expressions, written expressions, facial expressions and gestures. Among these various ways of expressing the emotion, the written method is a challenging task to extract the emotions, as the data is in the form of textual dat. Finding the different kinds of emotions is also a tedious task as it requires a lot of pre preparations of the textual data taken for the research. This research work is carried out to analyse and extract the emotions hidden in text data. The text data taken for the analysis is from the social media dataset. Using the raw text data directly from the social media will not serve the purpose. Therefore, the text data has to be pre-processed and then utilised for further processing. Pre-processing makes the text data more efficient and would infer valuable insights of the emotions hidden in it. The preprocessing steps also help to manage the text data for identifying the emotions conveyed in the text. This work proposes to deduct the emotions taken from the social media text data by applying the machine learning algorithm. Finally, the usefulness of the emotions is suggested for various stake holders, to find the attitude of individuals at that moment, the data is produced. .
文摘The processing of measuri ng data plays an important role in reverse engineering. Based on grey system the ory, we first propose some methods to the processing of measuring data in revers e engineering. The measured data usually have some abnormalities. When the abnor mal data are eliminated by filtering, blanks are created. The grey generation an d GM(1,1) are used to create new data for these blanks. For the uneven data sequ en ce created by measuring error, the mean generation is used to smooth it and then the stepwise and smooth generations are used to improve the data sequence.
基金Supported by National Natural Science Foundation of China(Grant No.51805260)National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.51925505)National Natural Science Foundation of China(Grant No.51775278).
文摘The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control,rather than using simplified physical models and human expertise.In the era of data-driven manufacturing,the explosion of data amount revolutionized how data is collected and analyzed.This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis.It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection,due to the complexity and uncertainty during indirect measurement.On the other hand,physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process.Machine learning,especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data,while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions.And these trends can demonstrated be by analyzing some typical applications of manufacturing process.
基金This research was done as part of TEKES-funded PanFlow project and as part of a project OPTIMI funded by the Academy of Finland (grant number 117587) in Micro- and Nanosystems Research Group, Tampere University of Technology, Finland.
文摘When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles.
基金support from National Natural Science Foundation of China(Nos.62274140,61904141,52173234)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(Grant No.MCMS-E-0422G03)the Shenzhen-Hong Kong-Macao Technology Research Program(Type C,202011033000145,SGDX2020110309300301).
文摘To realize a hyperconnected smart society with high productivity,advances in flexible sensing technology are highly needed.Nowadays,flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device’s software.Significant research efforts have been devoted to improving materials,sensing mechanism,and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology.Meanwhile,advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors.Machine learning(ML)as an important branch of artificial intelligence can efficiently handle such complex data,which can be multi-dimensional and multi-faceted,thus providing a powerful tool for easy interpretation of sensing data.In this review,the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented.Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated,which includes health monitoring,human-machine interfaces,object/surface recognition,pressure prediction,and human posture/motion identification.Finally,the advantages,challenges,and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed.These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
文摘This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine learning in cloud infrastructures,artificial intelligence techniques for big data analytics in cloud environments,and federated learning cloud systems are elucidated.Additionally,reinforcement learning,which is a novel technique that allows large cloud-based data centers,to allocate more energy-efficient resources is examined.Moreover,we propose an architecture that attempts to combine the features offered by several cloud providers to achieve an energy-efficient industrial IoT-based big data management framework(EEIBDM)established outside of every user in the cloud.IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-peratures.Furthermore,we propose an algorithm for determining the energy consumption of the infrastructure by evaluating the EEIBDM framework.Finally,future directions for the expansion of this research are discussed.
文摘Digital factory technology is a research focus in academe and industry,which is an advanced manufacturing tech- nology that is proposed to bridge product development and manufacturing.For applying digital factory technology in machining domain,a concept of digital process planning and its framework are suggested,its components including machining domain knowledge model,machining knowledge base,machining resource base and process planning system are studied.The framework of digital process planning is of value for implementing digital factory technology in machining industry.
基金supported by the National Key R&D Program of China(No.2022YFE03040004)National Natural Science Foundation of China(No.51821005)
文摘Machine learning research and applications in fusion plasma experiments are one of the main subjects on J-TEXT.Since 2013,various kinds of traditional machine learning,as well as deep learning methods have been applied to fusion plasma experiments.Further applications in the real-time experimental environment have proved the feasibility and effectiveness of the methods.For disruption prediction,we started by predicting disruptions of limited classes with a short warning time that could not meet the requirements of the mitigation system.After years of study,nowadays disruption prediction methods on J-TEXT are able to predict all kinds of disruptions with a high success rate and long enough warning time.Furthermore,cross-device disruption prediction methods have obtained promising results.Interpretable analysis of the models are studied.For diagnostics data processing,efforts have been made to reduce manual work in processing and to increase the robustness of the diagnostic system.Models based on both traditional machine learning and deep learning have been applied to real-time experimental environments.The models have been cooperating with the plasma control system and other systems,to make joint decisions to further support the experiments.
基金The National Natural Science Foundation ofChina (No.60672049)
文摘To improve the detection rate and lower down the false positive rate in intrusion detection system, dimensionality reduction is widely used in the intrusion detection system. For this purpose, a data processing (DP) with support vector machine (SVM) was built. Different from traditiona/ly identifying the redundant data before purging the audit data by expert knowledge or utilizing different kinds of subsets of the available 41-connection attributes to build a classifier, the proposed strategy first removes the attributes whose correlation with another attribute exceeds a threshold, and then classifies two sequence samples as one class while removing either of the two samples whose similarity exceeds a threshold. The results of performance experiments showed that the strategy of DP and SVM is superior to the other existing data reduction strategies ( e. g. , audit reduction, rule extraction, and feature selection), and that the detection model based on DP and SVM outperforms those based on data mining, soft computing, and hierarchical principal component analysis neural networks.