期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
分布交互仿真过程中的数据收集与回放
1
作者 单家元 张旺 吴沧浦 《北京理工大学学报》 EI CAS CSCD 1999年第S1期89-91,95,共4页
目的 对仿真过程进行记录和回放,利于事后分析和仿真重演. 方法 利用作者先期开发的分布式交互仿真(DIS)支撑平台,将数据收集和回放当作仿真实体对待,开辟实体表缓冲区,采用面向对象、线程和远程调用技术. 结果 设计并实... 目的 对仿真过程进行记录和回放,利于事后分析和仿真重演. 方法 利用作者先期开发的分布式交互仿真(DIS)支撑平台,将数据收集和回放当作仿真实体对待,开辟实体表缓冲区,采用面向对象、线程和远程调用技术. 结果 设计并实现了DIS环境下数据收集器和回放器. 结论 基于DIS支撑平台中缓冲区,可以方便实现任何仿真实体. 展开更多
关键词 分布式交互仿真 数据收集 数据回放
下载PDF
基于NiosII软核的嵌入式通用数据回放器
2
作者 乔水明 张卫杰 《微计算机信息》 北大核心 2007年第05Z期9-10,34,共3页
通用数据回放器通常用于检验实时信号处理器的接收和实时处理能力,或者设备的故障检测。本文针对嵌入式通用数据回放器,重点讨论了基于FPGA的嵌入式PCI总线数据回放卡的设计,由于板卡采用了FPGA和NiosII软核技术,降低了硬件设计难度,减... 通用数据回放器通常用于检验实时信号处理器的接收和实时处理能力,或者设备的故障检测。本文针对嵌入式通用数据回放器,重点讨论了基于FPGA的嵌入式PCI总线数据回放卡的设计,由于板卡采用了FPGA和NiosII软核技术,降低了硬件设计难度,减少板卡功耗,提高了适应性、通用性和可扩展性,同时,采用乒乓SDRAM大容量存储技术,提高了数据回放器的实时性等性能指标。 展开更多
关键词 数据回放器 FPGA PCI总线 嵌入式处理器
下载PDF
Deep-reinforcement-learning-based UAV autonomous navigation and collision avoidance in unknown environments
3
作者 Fei WANG Xiaoping ZHU +1 位作者 Zhou ZHOU Yang TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期237-257,共21页
In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenge... In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN. 展开更多
关键词 Faster R-CNN model replay memory data Deposit Mechanism(DDM) Two-part training approach Image-based Autonomous Navigation and Collision Avoidance(ANCA) Unmanned Aerial Vehicle(UAV)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部