Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on l...Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on local features,thus encountering difficulties in handling global features.In contrast to natural images,Structural Magnetic Resonance Imaging(sMRI)images exhibit a higher number of channel dimensions.However,during the Position Embedding stage ofMulti Head Self Attention(MHSA),the coded information related to the channel dimension is disregarded.To tackle these issues,we propose theRepBoTNet-CESA network,an advanced AD-aided diagnostic model that is capable of learning local and global features simultaneously.It combines the advantages of CNN networks in capturing local information and Transformer networks in integrating global information,reducing computational costs while achieving excellent classification performance.Moreover,it uses the Cubic Embedding Self Attention(CESA)proposed in this paper to incorporate the channel code information,enhancing the classification performance within the Transformer structure.Finally,the RepBoTNet-CESA performs well in various AD-aided diagnosis tasks,with an accuracy of 96.58%,precision of 97.26%,and recall of 96.23%in the AD/NC task;an accuracy of 92.75%,precision of 92.84%,and recall of 93.18%in the EMCI/NC task;and an accuracy of 80.97%,precision of 83.86%,and recall of 80.91%in the AD/EMCI/LMCI/NC task.This demonstrates that RepBoTNet-CESA delivers outstanding outcomes in various AD-aided diagnostic tasks.Furthermore,our study has shown that MHSA exhibits superior performance compared to conventional attention mechanisms in enhancing ResNet performance.Besides,the Deeper RepBoTNet-CESA network fails to make further progress in AD-aided diagnostic tasks.展开更多
Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective dia...Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective diagnosis.In this paper,we propose an ensemble summarization method that combines clustering and sampling to create a summary of the original data to ensure the inclusion of rare patterns.To the best of our knowledge,there has been no such technique available to augment the performance of anomaly detection techniques and simultaneously increase the efficiency of medical diagnosis.The performance of popular anomaly detection algorithms increases significantly in terms of accuracy and computational complexity when the summaries are used.Therefore,the medical diagnosis becomes more effective,and our experimental results reflect that the combination of the proposed summarization scheme and all underlying algorithms used in this paper outperforms the most popular anomaly detection techniques.展开更多
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the...The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.展开更多
Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this pa...Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between...Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods.展开更多
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin...In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.展开更多
Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast ...Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast nodules of BI-RADS 3 or above were selected as the research subjects.After pathological diagnosis,24 cases were malignant breast nodules of BI-RADS 3 or above,while 139 cases were benign breast nodules of BI-RADS 3 or above.The diagnosis rate of malignant and benign breast nodules of BI-RADS 3 or above,including 95%CI,was observed and analyzed.Results:The malignant and benign detection rates of conventional ultrasound were 88.63%and 75.00%,respectively,and the malignant and benign detection rates of ultrasound imaging were 93.18%and 87.50%,respectively,with 95%CIs greater than 0.7.Conclusion:Ultrasound imaging can help improve the diagnostic accuracy of benign and malignant breast nodules of BI-RADS 3 and above and reduce the misdiagnosis rate.展开更多
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se...At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.展开更多
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin...Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness.展开更多
The reliability of gas-insulated switchgear(GIS)partial discharge fault diagnosis is crucial for the safe and stable operation of power grids.This study proposed a data enhancement method based on a self-attention mec...The reliability of gas-insulated switchgear(GIS)partial discharge fault diagnosis is crucial for the safe and stable operation of power grids.This study proposed a data enhancement method based on a self-attention mechanism to optimize the VAE-GAN method and solve the problem of the lack of partial discharge samples and the unbalanced distribution between different defects.First,the non-subsampled contourlet transform(NSCT)algorithm was used to fuse the UHF and optical partial discharge signals to obtain a photoelectric fusion phase resolved partial discharge(PRPD)spectrum with richer information.Subsequently,the VAE structure was introduced into the traditional GAN,and the excellent hidden layer feature extraction ability of the VAE was used to guide the generation of the GAN.Then,the self-attention mechanism was integrated into the VAE-GAN,and the Wasserstein distance and gradient penalty mechanisms were used to optimize the network loss function and expand the sample sets to an equilibrium state.Finally,the KAZE and polar coordinate distribution entropy methods were used to extract the expanded samples.The eigenvectors of the sets were substituted into the long short-term memory(LSTM)network for partial discharge fault diagnosis.The experimental results show that the sample generation quality and fault diagnosis results of this method were significantly better than the traditional data enhancement method.The structure similarity index measure(SSIM)index is increased by 4.5%and 21.7%,respectively,and the average accuracy of fault diagnosis is increased by 22.9%,9%,5.7%,and 6.5%,respectively.The data enhancement method proposed in this study can provide a reference for GIS partial discharge fault diagnosis.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintena...Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintenance is critical to guarantee routine operations of industrial processes. The workflow of controller maintenance generally involves the following steps: monitor operating controller performance and detect performance degradation, diagnose probable root causes of control system malfunctions, and take specific actions to resolve associated problems. In this article, a comprehensive overview of the mainstream of control loop monitoring and diagnosis is provided, and some existing problems are also analyzed and discussed. From the viewpoint of synthesizing abundant information in the context of big data, some prospective ideas and promising methods are outlined to potentially solve problems in industrial applications.展开更多
The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single frac...The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis.展开更多
Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors ...Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability.展开更多
In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and impleme...In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and implemented, the performance of which, however, could be drastically influenced by the common presence of incomplete or missing data in real industrial scenarios. This paper presents a new FDD approach based on an incomplete data imputation technique for process fault recognition. It employs the modified stacked autoencoder,a deep learning structure, in the phase of incomplete data treatment, and classifies data representations rather than the imputed complete data in the phase of fault identification. A benchmark process, the Tennessee Eastman process, is employed to illustrate the effectiveness and applicability of the proposed method.展开更多
Developments in data storage and sensor technologies have allowed the cumulation of a large volume of data from industrial systems.Both structural and non-structural data of industrial systems are collected,which cove...Developments in data storage and sensor technologies have allowed the cumulation of a large volume of data from industrial systems.Both structural and non-structural data of industrial systems are collected,which covers data formats of time-series,text,images,sound,etc.Several researchers discussed above were mostly qualitative,and ceratin techniques need expert guidance to conclude on the condition of gearboxes.But,in this study,an improved symbiotic organism search with deep learning enabled fault diagnosis(ISOSDL-FD)model for gearbox fault detection in industrial systems.The proposed ISOSDL-FD technique majorly concentrates on the identification and classification of faults in the gearbox data.In addition,a Fast kurtogram based time-frequency analysis can be used for revealing the energy present in the machinery signals in the time-frequency representation.Moreover,the deep bidirectional recurrent neural network(DBiRNN)is applied for fault detection and classification.At last,the ISOS approach was derived for optimal hyperparameter tuning of the DL method so that the classification performance will be improvised.To illustrate the improvised performance of the ISOSDL-FD algorithm,a comprehensive experimental analysis can be performed.The experimental results stated the betterment of the ISOSDLFD algorithm over current techniques.展开更多
Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use o...Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use of motors,various motor faults may occur,which affects the normal use of electrical equipment and even causes accidents.It is significant to apply fault diagnosis for the motors at the construction site.Aiming at the problem that signal data of faulty motor lack diversity,this research designs a multi-layer perceptron Wasserstein generative adversarial network,which is used to enhance training data through distribution fusion.A discrete wavelet decomposition algorithm is employed to extract the low-frequency wavelet coefficients from the original motor current signals.These are used to train themulti-layer perceptron Wasserstein generative adversarial model.Then,the trainedmodel is applied to generate fake current wavelet coefficients with the fused distribution.A motor fault classification model consisting of a feature extractor and pattern recognizer is built based on perceptron.The data augmentation experiment shows that the fake dataset has a larger distribution than the real dataset.The classification model trained on a real dataset,fake dataset and combined dataset achieves 21.5%,87.2%,and 90.1%prediction accuracy on the unseen real data,respectively.The results indicate that the proposed data augmentation method can effectively generate fake data with the fused distribution.The motor fault classification model trained on a fake dataset has better generalization performance than that trained on a real dataset.展开更多
In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Associ...In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.展开更多
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine...Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.展开更多
基金the Key Project of Zhejiang Provincial Natural Science Foundation under Grants LD21F020001,Z20F020022the National Natural Science Foundation of China under Grants 62072340,62076185the Major Project of Wenzhou Natural Science Foundation under Grants 2021HZSY0071,ZS2022001.
文摘Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on local features,thus encountering difficulties in handling global features.In contrast to natural images,Structural Magnetic Resonance Imaging(sMRI)images exhibit a higher number of channel dimensions.However,during the Position Embedding stage ofMulti Head Self Attention(MHSA),the coded information related to the channel dimension is disregarded.To tackle these issues,we propose theRepBoTNet-CESA network,an advanced AD-aided diagnostic model that is capable of learning local and global features simultaneously.It combines the advantages of CNN networks in capturing local information and Transformer networks in integrating global information,reducing computational costs while achieving excellent classification performance.Moreover,it uses the Cubic Embedding Self Attention(CESA)proposed in this paper to incorporate the channel code information,enhancing the classification performance within the Transformer structure.Finally,the RepBoTNet-CESA performs well in various AD-aided diagnosis tasks,with an accuracy of 96.58%,precision of 97.26%,and recall of 96.23%in the AD/NC task;an accuracy of 92.75%,precision of 92.84%,and recall of 93.18%in the EMCI/NC task;and an accuracy of 80.97%,precision of 83.86%,and recall of 80.91%in the AD/EMCI/LMCI/NC task.This demonstrates that RepBoTNet-CESA delivers outstanding outcomes in various AD-aided diagnostic tasks.Furthermore,our study has shown that MHSA exhibits superior performance compared to conventional attention mechanisms in enhancing ResNet performance.Besides,the Deeper RepBoTNet-CESA network fails to make further progress in AD-aided diagnostic tasks.
文摘Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective diagnosis.In this paper,we propose an ensemble summarization method that combines clustering and sampling to create a summary of the original data to ensure the inclusion of rare patterns.To the best of our knowledge,there has been no such technique available to augment the performance of anomaly detection techniques and simultaneously increase the efficiency of medical diagnosis.The performance of popular anomaly detection algorithms increases significantly in terms of accuracy and computational complexity when the summaries are used.Therefore,the medical diagnosis becomes more effective,and our experimental results reflect that the combination of the proposed summarization scheme and all underlying algorithms used in this paper outperforms the most popular anomaly detection techniques.
基金Supported by National Natural Science Foundation of China(Grant Nos.51875031,52242507)Beijing Municipal Natural Science Foundation of China(Grant No.3212010)Beijing Municipal Youth Backbone Personal Project of China(Grant No.2017000020124 G018).
文摘The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance.
基金Supported by National Natural Science Foundation of China (Grant No.51875031)Beijing Municipal Natural Science Foundation (Grant No.3212010)。
文摘Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金supported by the National Key R&D Program of China(2021YFF0501101)the Youth Project of Hunan Provincial Department of Education(22B0586)the Education Reform Project of Hunan Provincial Department of Education(2022JGYB186).
文摘Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods.
文摘In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.
文摘Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast nodules of BI-RADS 3 or above were selected as the research subjects.After pathological diagnosis,24 cases were malignant breast nodules of BI-RADS 3 or above,while 139 cases were benign breast nodules of BI-RADS 3 or above.The diagnosis rate of malignant and benign breast nodules of BI-RADS 3 or above,including 95%CI,was observed and analyzed.Results:The malignant and benign detection rates of conventional ultrasound were 88.63%and 75.00%,respectively,and the malignant and benign detection rates of ultrasound imaging were 93.18%and 87.50%,respectively,with 95%CIs greater than 0.7.Conclusion:Ultrasound imaging can help improve the diagnostic accuracy of benign and malignant breast nodules of BI-RADS 3 and above and reduce the misdiagnosis rate.
文摘At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.
基金supported by the National Natural Science Foundation of China(62020106003,61873122,62303217)Aero Engine Corporation of China Industry-university-research Cooperation Project(HFZL2020CXY011)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(MCMS-I-0121G03).
文摘Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness.
文摘The reliability of gas-insulated switchgear(GIS)partial discharge fault diagnosis is crucial for the safe and stable operation of power grids.This study proposed a data enhancement method based on a self-attention mechanism to optimize the VAE-GAN method and solve the problem of the lack of partial discharge samples and the unbalanced distribution between different defects.First,the non-subsampled contourlet transform(NSCT)algorithm was used to fuse the UHF and optical partial discharge signals to obtain a photoelectric fusion phase resolved partial discharge(PRPD)spectrum with richer information.Subsequently,the VAE structure was introduced into the traditional GAN,and the excellent hidden layer feature extraction ability of the VAE was used to guide the generation of the GAN.Then,the self-attention mechanism was integrated into the VAE-GAN,and the Wasserstein distance and gradient penalty mechanisms were used to optimize the network loss function and expand the sample sets to an equilibrium state.Finally,the KAZE and polar coordinate distribution entropy methods were used to extract the expanded samples.The eigenvectors of the sets were substituted into the long short-term memory(LSTM)network for partial discharge fault diagnosis.The experimental results show that the sample generation quality and fault diagnosis results of this method were significantly better than the traditional data enhancement method.The structure similarity index measure(SSIM)index is increased by 4.5%and 21.7%,respectively,and the average accuracy of fault diagnosis is increased by 22.9%,9%,5.7%,and 6.5%,respectively.The data enhancement method proposed in this study can provide a reference for GIS partial discharge fault diagnosis.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
基金Supported by the National Basic Research Program of China(2012CB720505)the National Natural Science Foundation of China(21276137,61433001)+1 种基金Tsinghua University Initiative Scientific Research Programthe seventh framework programme(FP7-PEOPLE-2013-IRSES-612230)of European Union
文摘Owing to wide applications of automatic control systems in the process industries, the impacts of controller performance on industrial processes are becoming increasingly significant. Consequently, controller maintenance is critical to guarantee routine operations of industrial processes. The workflow of controller maintenance generally involves the following steps: monitor operating controller performance and detect performance degradation, diagnose probable root causes of control system malfunctions, and take specific actions to resolve associated problems. In this article, a comprehensive overview of the mainstream of control loop monitoring and diagnosis is provided, and some existing problems are also analyzed and discussed. From the viewpoint of synthesizing abundant information in the context of big data, some prospective ideas and promising methods are outlined to potentially solve problems in industrial applications.
基金supported by National Natural Science Foundation of China (Grant No. 61077071,Grant No. 51075349)Hebei Provincial Natural Science Foundation of China (Grant No. F2011203207)
文摘The vibration signals of machinery with various faults often show clear nonlinear characteristics.Currently,fractal dimension analysis as the common useful method for nonlinear signal analysis,is a kind of single fractal form,which only reflects the overall irregularity of signals,but cannot describe its local scaling properties.For comprehensive revealing of internal properties,a combinatorial method based on band-phase-randomized(BPR) surrogate data and multifractal is introduced.BPR surrogate data method is effective to eliminate nonlinearity in specified frequency band for a fault signal,which can be utilized to detect nonlinear degree in whole fault signal by nonlinear titration method,and the overall nonlinear distribution of fault signal is displayed in nonlinear characteristic curve that can be used to analyze the fault signal qualitatively.Then multifractal theory as a quantitative analysis method is used to describe geometrical characteristics and local scaling properties,and asymmetry coefficient of multifractal spectrum and multifractal entropy for fault signals are extracted as new criterions to diagnose machinery faults.Several typical faults include rotor misalignment,transversal crack,and static-dynamic rubbing fault are analyzed,and the results indicate that those faults can be distinguished by the proposed method effectively,which provides a qualitative and quantitative analysis way in the field of machinery fault diagnosis.
基金Supported by the National Natural Science Foundation of China(Grant U1964201,Grant 61790562 and Grant 61803120)by the Fundamental Research Fundsfor the Central Universities.
文摘Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability.
基金supported by the National Natural Science Foundation of China(61433001)Tsinghua University Initiative Scientific Research Program。
文摘In modern industrial processes, timely detection and diagnosis of process abnormalities are critical for monitoring process operations. Various fault detection and diagnosis(FDD) methods have been proposed and implemented, the performance of which, however, could be drastically influenced by the common presence of incomplete or missing data in real industrial scenarios. This paper presents a new FDD approach based on an incomplete data imputation technique for process fault recognition. It employs the modified stacked autoencoder,a deep learning structure, in the phase of incomplete data treatment, and classifies data representations rather than the imputed complete data in the phase of fault identification. A benchmark process, the Tennessee Eastman process, is employed to illustrate the effectiveness and applicability of the proposed method.
文摘Developments in data storage and sensor technologies have allowed the cumulation of a large volume of data from industrial systems.Both structural and non-structural data of industrial systems are collected,which covers data formats of time-series,text,images,sound,etc.Several researchers discussed above were mostly qualitative,and ceratin techniques need expert guidance to conclude on the condition of gearboxes.But,in this study,an improved symbiotic organism search with deep learning enabled fault diagnosis(ISOSDL-FD)model for gearbox fault detection in industrial systems.The proposed ISOSDL-FD technique majorly concentrates on the identification and classification of faults in the gearbox data.In addition,a Fast kurtogram based time-frequency analysis can be used for revealing the energy present in the machinery signals in the time-frequency representation.Moreover,the deep bidirectional recurrent neural network(DBiRNN)is applied for fault detection and classification.At last,the ISOS approach was derived for optimal hyperparameter tuning of the DL method so that the classification performance will be improvised.To illustrate the improvised performance of the ISOSDL-FD algorithm,a comprehensive experimental analysis can be performed.The experimental results stated the betterment of the ISOSDLFD algorithm over current techniques.
基金supported by the National Key Research and Development Program of China (No.2020YFB1713503)the Fundamental Research Funds for the Central Universities (No.20720190009)2019 Industry-University-Research Cooperation Project of Aero Engine Corporation of China (No.HFZL2019CXY02).
文摘Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use of motors,various motor faults may occur,which affects the normal use of electrical equipment and even causes accidents.It is significant to apply fault diagnosis for the motors at the construction site.Aiming at the problem that signal data of faulty motor lack diversity,this research designs a multi-layer perceptron Wasserstein generative adversarial network,which is used to enhance training data through distribution fusion.A discrete wavelet decomposition algorithm is employed to extract the low-frequency wavelet coefficients from the original motor current signals.These are used to train themulti-layer perceptron Wasserstein generative adversarial model.Then,the trainedmodel is applied to generate fake current wavelet coefficients with the fused distribution.A motor fault classification model consisting of a feature extractor and pattern recognizer is built based on perceptron.The data augmentation experiment shows that the fake dataset has a larger distribution than the real dataset.The classification model trained on a real dataset,fake dataset and combined dataset achieves 21.5%,87.2%,and 90.1%prediction accuracy on the unseen real data,respectively.The results indicate that the proposed data augmentation method can effectively generate fake data with the fused distribution.The motor fault classification model trained on a fake dataset has better generalization performance than that trained on a real dataset.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.50539010)the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China(Grant No.200801019)
文摘In conjunction with association rules for data mining, the connections between testing indices and strong and weak association rules were determined, and new derivative rules were obtained by further reasoning. Association rules were used to analyze correlation and check consistency between indices. This study shows that the judgment obtained by weak association rules or non-association rules is more accurate and more credible than that obtained by strong association rules. When the testing grades of two indices in the weak association rules are inconsistent, the testing grades of indices are more likely to be erroneous, and the mistakes are often caused by human factors. Clustering data mining technology was used to analyze the reliability of a diagnosis, or to perform health diagnosis directly. Analysis showed that the clustering results are related to the indices selected, and that if the indices selected are more significant, the characteristics of clustering results are also more significant, and the analysis or diagnosis is more credible. The indices and diagnosis analysis function produced by this study provide a necessary theoretical foundation and new ideas for the development of hydraulic metal structure health diagnosis technology.
文摘Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields.