期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Effect of calibration data series length on performance and optimal parameters of hydrological model 被引量:3
1
作者 Chuan-zhe LI Hao WANG +3 位作者 Jia LIU Deng-hua YAN Fu-liang YU Lu ZHANG 《Water Science and Engineering》 EI CAS 2010年第4期378-393,共16页
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ... In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates. 展开更多
关键词 calibration data series length model performance optimal parameter hydrological model data-limited catchment
下载PDF
An Innovative Deep Architecture for Flight Safety Risk Assessment Based on Time Series Data
2
作者 Hong Sun Fangquan Yang +2 位作者 Peiwen Zhang Yang Jiao Yunxiang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2549-2569,共21页
With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk manageme... With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management,but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry.Therefore,an improved risk assessment algorithm(PS-AE-LSTM)based on long short-term memory network(LSTM)with autoencoder(AE)is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels.Firstly,based on the normal distribution characteristics of flight data,a probability severity(PS)model is established to enhance the quality of risk assessment labels.Secondly,autoencoder is introduced to reconstruct the flight parameter data to improve the data quality.Finally,utilizing the time-series nature of flight data,a long and short-termmemory network is used to classify the risk level and improve the accuracy of risk assessment.Thus,a risk assessment experimentwas conducted to analyze a fleet landing phase dataset using the PS-AE-LSTMalgorithm to assess the risk level associated with aircraft hard landing events.The results show that the proposed algorithm achieves an accuracy of 86.45%compared with seven baseline models and has excellent risk assessment capability. 展开更多
关键词 Safety engineering risk assessment time series data autoencoder LSTM
下载PDF
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
3
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Effects of Freezing Disaster on Green-up Date of Vegetation Using MODIS/EVI Time Series Data 被引量:3
4
作者 夏浩铭 毕远溥 杨永国 《Agricultural Science & Technology》 CAS 2009年第3期131-135,共5页
In the field of global changes, the relationship between plant phenology and climate, which reflects the response of terrestrial ecosystem to global climate change, has become a key subject that is highly concerned. U... In the field of global changes, the relationship between plant phenology and climate, which reflects the response of terrestrial ecosystem to global climate change, has become a key subject that is highly concerned. Using the moderate-resolution imaging spectroradiometer (MODIS)/enhanced vegetation index(EVI) collected every eight days during January- July from 2005 to 2008 and the corresponding remote sensing data as experimental materials, we constructed cloud-free images via the Harmonic analysis of time series (HANTS). The cloud-free images were then treated by dynamic threshold method for obtaining the vegetation phenology in green up period and its distribution pattern. And the distribution pattern between freezing disaster year and normal year were comparatively analyzed for revealing the effect of freezing disaster on vegetation phenology in experimental plot. The result showed that the treated EVI data performed well in monitoring the effect of freezing disaster on vegetation phenology, accurately reflecting the regions suffered from freezing disaster. This result suggests that processing of remote sensing data using HANTS method could well monitor the ecological characteristics of vegetation. 展开更多
关键词 Time series data EVI HANTS MODIS
下载PDF
Long time data series and data stewardship reference model
5
作者 Mirko Albani Iolanda Maggio 《Big Earth Data》 EI 2020年第4期353-366,共14页
The need for accessing historical Earth Observation(EO)data series strongly increased in the last ten years,particularly for long-term science and environmental monitoring applications.This trend is likely to increase... The need for accessing historical Earth Observation(EO)data series strongly increased in the last ten years,particularly for long-term science and environmental monitoring applications.This trend is likely to increase even more in the future,in particular regarding the growing interest on global change monitoring which is driving users to request time-series of data spanning 20 years and more,and also due to the need to support the United Nations Framework Convention on Climate Change(UNFCCC).While much of the satellite observations are accessible from different data centers,the solution for analyzing measurements collected from various instruments for time series analysis is both difficult and critical.Climate research is a big data problem that involves high data volume of measurements,methods for on-the-fly extraction and reduction to keep up with the speed and data volume,and the ability to address uncertainties from data collections,processing,and analysis.The content of EO data archives is extending from a few years to decades and therefore,their value as a scientific time-series is continuously increasing.Hence there is a strong need to preserve the EO space data without time constraints and to keep them accessible and exploitable.The preservation of EO space data can also be considered as responsibility of the Space Agencies or data owners as they constitute a humankind asset.This publication aims at describing the activities supported by the European Space Agency relating to the Long Time Series generation with all relevant best practices and models needed to organise and measure the preservation and stewardship processes.The Data Stewardship Reference Model has been defined to give an overview and a way to help the data owners and space agencies in order to preserve and curate the space datasets to be ready for long time data series composition and analysis. 展开更多
关键词 Heritage data Programme long time data series fundamental climate data record long-term data preservation
原文传递
Non-Stationary Trend Change Point Pattern Using 24-Hourly Annual Maximum Series (AMS) Precipitation Data
6
作者 Masi G. Sam Ify L. Nwaogazie Chiedozie Ikebude 《Journal of Water Resource and Protection》 CAS 2022年第8期592-609,共18页
This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and ch... This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and change points in 24-hourly annual maximum series (AMS) extracted from monthly maximum series (MMS) data for thirty years (1986-2015) rainfall data for Uyo metropolis. Trend analysis was performed using Mann-Kendall (MK) test and Sen’s slope estimator (SSE) used to obtain the trend magnitude, while the trend change point analysis was conducted using the distribution-free cumulative sum test (CUSUM) and the sequential Mann-Kendall test (SQMK). A free CUSUM plot date of change point of rainfall trend as 2002 at 90% confidence interval was obtained from where the increasing trend started and became more pronounced in the year 2011, another change point year from the SQMK plot with the trend intensifying. The SSE gave an average rate of change in rainfall as 2.1288 and 2.16 mm/year for AMS and MMS time series data respectively. Invariably, the condition for Non-stationary concept application is met for intensity-duration-frequency modeling. 展开更多
关键词 PRECIPITATION data series Trend Analysis Mann-Kendall Test Change Point
下载PDF
Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data 被引量:2
7
作者 伍雪冬 王耀南 +1 位作者 刘维亭 朱志宇 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期546-551,共6页
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random in... On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and CUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent. 展开更多
关键词 prediction of time series with missing data random interruption failures in the observation neural network approximation
下载PDF
A Survey of Time Series Data Visualization Methods 被引量:1
8
作者 Wangdong Jiang Jie Wu +3 位作者 Guang Sun Yuxin Ouyang Jing Li Shuang Zhou 《Journal of Quantum Computing》 2020年第2期105-117,共13页
In the era of big data,the general public is more likely to access big data,but they wouldn’t like to analyze the data.Therefore,the traditional data visualization with certain professionalism is not easy to be accep... In the era of big data,the general public is more likely to access big data,but they wouldn’t like to analyze the data.Therefore,the traditional data visualization with certain professionalism is not easy to be accepted by the general public living in the fast pace.Under this background,a new general visualization method for dynamic time series data emerges as the times require.Time series data visualization organizes abstract and hard-to-understand data into a form that is easily understood by the public.This method integrates data visualization into short videos,which is more in line with the way people get information in modern fast-paced lifestyles.The modular approach also facilitates public participation in production.This paper summarizes the dynamic visualization methods of time series data ranking,studies the relevant literature,shows its value and existing problems,and gives corresponding suggestions and future research prospects. 展开更多
关键词 Dynamic visualization historical ranking of time series data VIDEO big data
下载PDF
Time-Series Data and Analysis Software of Connected Vehicles
9
作者 Jaekyu Lee Sangyub Lee +1 位作者 Hyosub Choi Hyeonjoong Cho 《Computers, Materials & Continua》 SCIE EI 2021年第6期2709-2727,共19页
In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze ... In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze the collected data and the second to conduct exploratory data analysis of the collected vehicle data.In particular,we analyzed the dangerous driving patterns of motorists based on the safety standards of the Korea Transportation Safety Authority.We also analyzed seasonal fuel efciency(four seasons)and mileage of vehicles,and identied rapid acceleration,rapid deceleration,sudden stopping(harsh braking),quick starting,sudden left turn,sudden right turn and sudden U-turn driving patterns of vehicles.We implemented the density-based spatial clustering of applications with a noise algorithm for trajectory analysis based on GPS(Global Positioning System)data and designed a long shortterm memory algorithm and an auto-regressive integrated moving average model for time-series data analysis.In this paper,we mainly describe the development environment of the analysis software,the structure and data ow of the overall analysis platform,the conguration of the collected vehicle data,and the various algorithms used in the analysis.Finally,we present illustrative results of our analysis,such as dangerous driving patterns that were detected. 展开更多
关键词 Connected vehicle data time series data OBD data analysis correlation coef
下载PDF
Series Statistics Data of Non-ferrous Metals of China──Ⅰ Surveying
10
《中国有色金属学会会刊:英文版》 CSCD 1996年第2期152-153,共2页
SeriesStatisticsDataofNon-ferrousMetalsofChinaⅠ2ASurveyingofTheChinaNationalNon-ferrousMetalsIndustryCorpcra... SeriesStatisticsDataofNon-ferrousMetalsofChinaⅠ2ASurveyingofTheChinaNationalNon-ferrousMetalsIndustryCorpcration(CNNC)Bycourt... 展开更多
关键词 series Statistics data of Non-ferrous Metals of China SURVEYING
下载PDF
Determination of Kolmogorov Entropy of Chaotic Attractor Included in One-Dimensional Time Series of Meteorological Data
11
作者 严绍瑾 彭永清 王建中 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第2期243-250,共8页
The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Ko... The 1970-1985 day to day averaged pressure dataset of Shanghai and the extension method in phase space are used to calculate the correlation dimension D and the second-order Renyi entropy K2 of the approximation of Kolmogorov's entropy, the fractional dimension D = 7.7-7.9 and the positive value K2 - 0.1 are obtained. This shows that the attractor for the short-term weather evolution in the monsoon region of China exhibits a chaotic motion. The estimate of K2 yields a predictable time scale of about ten days. This result is in agreement with that obtained earlier by the dynamic-statistical approach.The effects of the lag time i on the estimate of D and K2 are investigated. The results show that D and K2 are convergent with respect to i. The day to day averaged pressure series used in this paper are treated for the extensive phase space with T = 5, the coordinate components are independent of each other; therefore, the dynamical character quantities of the system are stable and reliable. 展开更多
关键词 Determination of Kolmogorov Entropy of Chaotic Attractor Included in One-Dimensional Time series of Meteorological data
下载PDF
Comparative Analysis of Climatic Change Trend and Change-Point Analysis for Long-Term Daily Rainfall Annual Maximum Time Series Data in Four Gauging Stations in Niger Delta
12
作者 Masi G. Sam Ify L. Nwaogazie +4 位作者 Chiedozie Ikebude Jonathan O. Irokwe Diaa W. El Hourani Ubong J. Inyang Bright Worlu 《Open Journal of Modern Hydrology》 2023年第4期229-245,共17页
The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta re... The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta region of Nigeria. Using daily or 24-hourly annual maximum series (AMS) data with the Indian Meteorological Department (IMD) and the modified Chowdury Indian Meteorological Department (MCIMD) models were adopted to downscale the time series data. Mann-Kendall (MK) trend and Sen’s Slope Estimator (SSE) test showed a statistically significant trend for Uyo and Benin, while Port Harcourt and Warri showed mild trends. The Sen’s Slope magnitude and variation rate were 21.6, 10.8, 6.00 and 4.4 mm/decade, respectively. The trend change-point analysis showed the initial rainfall change-point dates as 2002, 2005, 1988, and 2000 for Uyo, Benin, Port Harcourt, and Warri, respectively. These prove positive changing climatic conditions for rainfall in the study area. Erosion and flood control facilities analysis and design in the Niger Delta will require the application of Non-stationary IDF modelling. 展开更多
关键词 Rainfall Time series data Climate Change Trend Analysis Variation Rate Change Point Dates Non-Parametric Statistical Test
下载PDF
Application of a Bayesian method to data-poor stock assessment by using Indian Ocean albacore (Thunnus alalunga) stock assessment as an example 被引量:14
13
作者 GUAN Wenjiang TANG Lin +2 位作者 ZHU Jiangfeng TIAN Siquan XU Liuxiong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期117-125,共9页
It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in dat... It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in data-poor situations through borrowing strength from prior information deduced from species with good-quality data or other known information. Because there is considerable uncertainty remaining in the stock assessment of albacore tuna(Thunnus alalunga) in the Indian Ocean due to the limited and low-quality data, we investigate the advantages of a Bayesian method in data-poor stock assessment by using Indian Ocean albacore stock assessment as an example. Eight Bayesian biomass dynamics models with different prior assumptions and catch data series were developed to assess the stock. The results show(1) the rationality of choice of catch data series and assumption of parameters could be enhanced by analyzing the posterior distribution of the parameters;(2) the reliability of the stock assessment could be improved by using demographic methods to construct a prior for the intrinsic rate of increase(r). Because we can make use of more information to improve the rationality of parameter estimation and the reliability of the stock assessment compared with traditional statistical methods by incorporating any available knowledge into the informative priors and analyzing the posterior distribution based on Bayesian framework in data-poor situations, we suggest that the Bayesian method should be an alternative method to be applied in data-poor species stock assessment, such as Indian Ocean albacore. 展开更多
关键词 data-poor stock assessment Bayesian method catch data series demographic method Indian Ocean Thunnus alalunga
下载PDF
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data
14
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IoT adaptive weighted learning irregular time series perception closed-loop attention mechanism
下载PDF
Generating Synthetic Data to Reduce Prediction Error of Energy Consumption
15
作者 Debapriya Hazra Wafa Shafqat Yung-Cheol Byun 《Computers, Materials & Continua》 SCIE EI 2022年第2期3151-3167,共17页
Renewable and nonrenewable energy sources are widely incorporated for solar and wind energy that produces electricity without increasing carbon dioxide emissions.Energy industries worldwide are trying hard to predict ... Renewable and nonrenewable energy sources are widely incorporated for solar and wind energy that produces electricity without increasing carbon dioxide emissions.Energy industries worldwide are trying hard to predict future energy consumption that could eliminate over or under contracting energy resources and unnecessary financing.Machine learning techniques for predicting energy are the trending solution to overcome the challenges faced by energy companies.The basic need for machine learning algorithms to be trained for accurate prediction requires a considerable amount of data.Another critical factor is balancing the data for enhanced prediction.Data Augmentation is a technique used for increasing the data available for training.Synthetic data are the generation of new data which can be trained to improve the accuracy of prediction models.In this paper,we propose a model that takes time series energy consumption data as input,pre-processes the data,and then uses multiple augmentation techniques and generative adversarial networks to generate synthetic data which when combined with the original data,reduces energy consumption prediction error.We propose TGAN-skip-Improved-WGAN-GP to generate synthetic energy consumption time series tabular data.We modify TGANwith skip connections,then improveWGANGPby defining a consistency term,and finally use the architecture of improved WGAN-GP for training TGAN-skip.We used various evaluation metrics and visual representation to compare the performance of our proposed model.We also measured prediction accuracy along with mean and maximum error generated while predicting with different variations of augmented and synthetic data with original data.The mode collapse problemcould be handled by TGAN-skip-Improved-WGAN-GP model and it also converged faster than existing GAN models for synthetic data generation.The experiment result shows that our proposed technique of combining synthetic data with original data could significantly reduce the prediction error rate and increase the prediction accuracy of energy consumption. 展开更多
关键词 Energy consumption generative adversarial networks synthetic data time series data TGAN WGAN-GP TGAN-skip prediction error augmentation
下载PDF
SHAPE-BASED TIME SERIES SIMILARITY MEASURE AND PATTERN DISCOVERY ALGORITHM
16
作者 ZengFanzi QiuZhengding +1 位作者 LiDongsheng YueJianhai 《Journal of Electronics(China)》 2005年第2期142-148,共7页
Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the... Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the scale and baseline, value-based methods bring about problem when the objective is to capture the shape. Thus, a similarity measure based on shape, Sh measure, is originally proposed, andthe properties of this similarity and corresponding proofs are given. Then a time series shape pattern discovery algorithm based on Sh measure is put forward. The proposed algorithm is terminated in finite iteration with given computational and storage complexity. Finally the experiments on synthetic datasets and sunspot datasets demonstrate that the time series shape pattern algorithm is valid. 展开更多
关键词 Shape similarity measure Pattern discovery algorithm Time series data mining
下载PDF
Addressing the Challenge of Interpreting Microclimatic Weather Data Collected from Urban Sites
17
作者 L.Bourikas T.Shen +4 位作者 P.A.B.James D.H.C.Chow M.F.Jentsch J.Darkwa A.S.Bahaj 《Journal of Power and Energy Engineering》 2013年第5期7-15,共9页
This paper presents some installation and data analysis issues from an ongoing urban air temperature and humidity measurement campaign in Hangzhou and Ningbo, China. The location of the measurement sites, the position... This paper presents some installation and data analysis issues from an ongoing urban air temperature and humidity measurement campaign in Hangzhou and Ningbo, China. The location of the measurement sites, the positioning of the sensors and the harsh conditions in an urban environment can result in missing values and observations that are unrepresentative of the local urban microclimate. Missing data and erroneous values in micro-scale weather time series can produce bias in the data analysis, false correlations and wrong conclusions when deriving the specific local weather patterns. A methodology is presented for the identification of values that could be false and for determining whether these are “noise”. Seven statistical methods were evaluated in their performance for replacing missing and erroneous values in urban weather time series. The two methods that proposed replacement with the mean values from sensors in locations with a Sky View Factor similar to that of the target sensor and the sensors closest to the target’s location performed well for all Day-Night and Cold-Warm days scenarios. However, during night time in warm weather the replacement with the mean values for air temperature of the nearest locations outperformed all other methods. The results give some initial evidence of the distinctive urban microclimate development in time and space under different regional weather forcings. 展开更多
关键词 Urban Microclimate Observations Installation Challenges Weather data Time series Analysis Missing data
下载PDF
Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review 被引量:7
18
作者 LIU Ze-qin CAI Zong-wu +1 位作者 FANG Ying LIN Ming 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2020年第1期57-83,共27页
In this paper,we highlight some recent developments of a new route to evaluate macroeconomic policy effects,which are investigated under the framework with potential outcomes.First,this paper begins with a brief intro... In this paper,we highlight some recent developments of a new route to evaluate macroeconomic policy effects,which are investigated under the framework with potential outcomes.First,this paper begins with a brief introduction of the basic model setup in modern econometric analysis of program evaluation.Secondly,primary attention goes to the focus on causal effect estimation of macroeconomic policy with single time series data together with some extensions to multiple time series data.Furthermore,we examine the connection of this new approach to traditional macroeconomic models for policy analysis and evaluation.Finally,we conclude by addressing some possible future research directions in statistics and econometrics. 展开更多
关键词 Impulse response function Macroeconomic casual inferences Macroeconomic policy evaluation Multiple time series data Potential outcomes Treatment effect.
下载PDF
Wind and Photovoltaic Power Time Series Data Aggregation Method Based on an Ensemble Clustering and Markov Chain 被引量:4
19
作者 Jingxin Jin Lin Ye +4 位作者 Jiachen Li Yongning Zhao Peng Lu Weisheng Wang Xuebin Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第3期757-768,共12页
Reducing the input wind and photovoltaic power time series data can improve the efficiency of time sequential simulations.In this paper,a wind and photovoltaic power time series data aggregation method based on an ens... Reducing the input wind and photovoltaic power time series data can improve the efficiency of time sequential simulations.In this paper,a wind and photovoltaic power time series data aggregation method based on an ensemble clustering and Markov chain(ECMC)is proposed.The ECMC method can effectively reduce redundant information in the data.First,the wind and photovoltaic power time series data were divided into scenarios,and ensemble clustering was used to cluster the divided scenarios.At the same time,the Davies-Bouldin Index(DBI)is adopted to select the optimal number of clusters.Then,according to the temporal correlation between wind and photovoltaic scenarios,the wind and photovoltaic clustering results are merged and reduced to form a set of combined typical day scenarios that can reflect the characteristics of historical data within the calculation period.Finally,based on the Markov Chain,the state transition probability matrix of various combined typical day scenarios is constructed,and the aggregation state sequence of random length is generated,and then,the combined typical day scenarios of wind and photovoltaic were sampled in a sequential one-way sequence according to the state sequence and then are built into a representative wind and photovoltaic power time series aggregation sequence.A provincial power grid was chosen as an example to compare the multiple evaluation indexes of different aggregation methods.The results show that the ECMC aggregation method improves the accuracy and efficiency of time sequential simulations. 展开更多
关键词 Aggregation method ensemble clustering markov chain time sequential simulations wind and photovoltaic power time series data
原文传递
An improved morphological weighted dynamic similarity measurement algorithm for time series data 被引量:1
20
作者 Ke Yi Zhou Shaolin Hu 《International Journal of Intelligent Computing and Cybernetics》 EI 2018年第4期486-495,共10页
Purpose–The similarity measurement of time series is an important research in time series detection,which is a basic work of time series clustering,anomaly discovery,prediction and many other data mining problems.The... Purpose–The similarity measurement of time series is an important research in time series detection,which is a basic work of time series clustering,anomaly discovery,prediction and many other data mining problems.The purpose of this paper is to design a new similarity measurement algorithm to improve the performance of the original similarity measurement algorithm.The subsequence morphological information is taken into account by the proposed algorithm,and time series is represented by a pattern,so the similarity measurement algorithm is more accurate.Design/methodology/approach–Following some previous researches on similarity measurement,an improved method is presented.This new method combines morphological representation and dynamic time warping(DTW)technique to measure the similarities of time series.After the segmentation of time series data into segments,three parameter values of median,point number and slope are introduced into the improved distance measurement formula.The effectiveness of the morphological weighted DTW algorithm(MW-DTW)is demonstrated by the example of momentum wheel data of an aircraft attitude control system.Findings–The improved method is insensitive to the distortion and expansion of time axis and can be used to detect the morphological changes of time series data.Simulation results confirm that this method proposed in this paper has a high accuracy of similarity measurement.Practical implications–This improved method has been used to solve the problem of similarity measurement in time series,which is widely emerged in different fields of science and engineering,such as the field of control,measurement,monitoring,process signal processing and economic analysis.Originality/value–In the similarity measurement of time series,the distance between sequences is often used as the only detection index.The results of similarity measurement should not be affected by the longitudinal or transverse stretching and translation changes of the sequence,so it is necessary to incorporate themorphological changes of the sequence into similarity measurement.The MW-DTW is more suitable for the actual situation.At the same time,the MW-DTW algorithm reduces the computational complexity by transforming the computational object to subsequences. 展开更多
关键词 Dynamic time warping Morphological representation Similarity measurement Time series data
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部