We compared data of sea surface wind from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) with that collected from eight buoys deployed in the Yellow and East China seas.The buoy...We compared data of sea surface wind from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) with that collected from eight buoys deployed in the Yellow and East China seas.The buoy data covered a period from 2010 to 2011,during which the longest time series without missing data extended for 329 days.Results show that the ERA-Interim wind data agree well with the buoy data.The regression coefficients between the ERA-Interim and observed wind speed and direction are greater than 0.7 and 0.79,respectively.However,the ERA-Interim wind data overestimate wind speed at most of the buoy stations,for which the largest bias is 1.8 m/s.Moreover,it is found from scatter plots of wind direction that about 13%of the ERA-Interim wind data can be classified as bad for wind speeds below6 m/s.Overall,the ERA-Interim data forecast both the wind speed and direction well,although they are not very representative of our observations,especially those where the wind speed is below 6 m/s.展开更多
Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(...Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(XCO_(2))since 2014.In this study,the OCO-2 XCO_(2)products were compared between in-situ data from the Total Carbon Column Network(TCCON)and Global Monitoring Division(GMD),and modeling data from CarbonTracker2019 over global ocean and land.Results showed that the OCO-2 XCO_(2)data are consistent with the TCCON and GMD in situ XCO_(2)data,with mean absolute biases of 0.25×10^(-6)and 0.67×10^(-6),respectively.Moreover,the OCO-2 XCO_(2)data are also consistent with the CarbonTracker2019 modeling XCO_(2)data,with mean absolute biases of 0.78×10^(-6)over ocean and 1.02×10^(-6)over land.The results indicated the high accuracy of the OCO-2 XCO_(2)product over global ocean which could be applied to estimate the air-sea CO_(2)flux.展开更多
An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing ...An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing in China, and to analyze the main factors affecting the performance of this method. The toxic scallop Patinopecten yessoensis collected from coast of Bohai Sea, China, was used as a test sample in the comparison study. The results were reported and evaluated using robust statistical methods. The z scores showed that 80%, 8%, and 12% of laboratories reported satisfactory results, unsatisfactory results, and questionable results, respectively. This evaluation demonstrates that the PSP mouse bioassay is an appropriate method for screening and testing PSP toxicity in shellfish. However, it was found that the experience and skill of technicians, as well as the body weight and health status of mice being used significantly affected the accuracy of the method.展开更多
The REGWQ (Ryan-Einot-Gabriel-Welsch and Quiot) test produces allow us to compare a large numbers of data while controlling the probability of making at least one Type I error or Family wise error. The purpose of th...The REGWQ (Ryan-Einot-Gabriel-Welsch and Quiot) test produces allow us to compare a large numbers of data while controlling the probability of making at least one Type I error or Family wise error. The purpose of this study was to use the REGWQ multiple comparisons test of qualitative data. Okra characterization data was applied and submitted to ANOVA (P_0.05) with REGWQ for multiple comparisons of the means. The results of this study establish a summary strategy of following a significant ANOVA F with REGWQ test on multiple comparisons of means in summation a large entries/treatments to the small groups when variances are heterogeneous. Cluster analysis should be especially useful for grouping qualitative treatment and could also be used in conjunction of with REFWQ multiple produces. The development of study will be in REGWQ multiple producers in SAS option for distributed the large number of treatment to small group with summering the best choice of treatments.展开更多
To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is...To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.展开更多
A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolu...A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.展开更多
Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergon...Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.展开更多
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compare...Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.展开更多
Introduction: The present work compared the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Four popular data mining algorithms (Decision tree, Naive Bayes, N...Introduction: The present work compared the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Four popular data mining algorithms (Decision tree, Naive Bayes, Neural network, logistic regression) were used to build the model that predicts whether an individual was being tested for HIV among adults in Ethiopia using EDHS 2011. The final experimentation results indicated that the decision tree (random tree algorithm) performed the best with accuracy of 96%, the decision tree induction method (J48) came out to be the second best with a classification accuracy of 79%, followed by neural network (78%). Logistic regression has also achieved the least classification accuracy of 74%. Objectives: The objective of this study is to compare the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes. Data preprocessing was performed and missing values for the categorical variable were replaced by the modal value of the variable. Different data mining techniques were used to build the predictive model. Results: The target dataset contained 30,625 study participants. Out of which 16,515 (54%) participants were women while the rest 14,110 (46%) were men. The age of the participants in the dataset ranged from 15 to 59 years old with modal age of 15 - 19 years old. Among the study participants, 17,719 (58%) have never been tested for HIV while the rest 12,906 (42%) had been tested. Residence, educational level, wealth index, HIV related stigma, knowledge related to HIV, region, age group, risky sexual behaviour attributes, knowledge about where to test for HIV and knowledge on family planning through mass media were found to be predictors for HIV testing. Conclusion and Recommendation: The results obtained from this research reveal that data mining is crucial in extracting relevant information for the effective utilization of HIV testing services which has clinical, community and public health importance at all levels. It is vital to apply different data mining techniques for the same settings and compare the model performances (based on accuracy, sensitivity, and specificity) with each other. Furthermore, this study would also invite interested researchers to explore more on the application of data mining techniques in healthcare industry or else in related and similar settings for the future.展开更多
The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothi...The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.展开更多
Lakes are an important component of the earth climate system. They play an important role in the study of basin weather forecasting, air quality forecasting, and regional climate research. The accuracy of driving vari...Lakes are an important component of the earth climate system. They play an important role in the study of basin weather forecasting, air quality forecasting, and regional climate research. The accuracy of driving variables is the basic premise to ensure the rationality of lake mode simulation. Based on the in-situ observations at Bifenggang site of the Lake Taihu Eddy flux Network from 2012 to 2017, this paper investigated temporal variations in temperature, relative humidity, wind speed, radiation components at different time scales (hourly, seasonal and interannual). ERA5 reanalysis data were compared with in-situ observation to quantify the error and evaluate the performance of reanalysis data. The results show that: 1) On the hourly scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. 2) On the seasonal variation scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. However, the descriptions of wind speed, relative humidity and downward short-wave have large deviations. 3) On the interannual scale, the ERA5 reanalysis data show a good performance for temperature, followed by downward longwave radiation, downward shortwave radiation and relative humidity.展开更多
基金Supported by the National Natural Science Foundation of China(No.41276026)the Ocean Special Project(No.XDA11020301)the National Basic Research Program of China(973 Program)(No.2009CB421205)
文摘We compared data of sea surface wind from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) with that collected from eight buoys deployed in the Yellow and East China seas.The buoy data covered a period from 2010 to 2011,during which the longest time series without missing data extended for 329 days.Results show that the ERA-Interim wind data agree well with the buoy data.The regression coefficients between the ERA-Interim and observed wind speed and direction are greater than 0.7 and 0.79,respectively.However,the ERA-Interim wind data overestimate wind speed at most of the buoy stations,for which the largest bias is 1.8 m/s.Moreover,it is found from scatter plots of wind direction that about 13%of the ERA-Interim wind data can be classified as bad for wind speeds below6 m/s.Overall,the ERA-Interim data forecast both the wind speed and direction well,although they are not very representative of our observations,especially those where the wind speed is below 6 m/s.
基金The National Key Research and Development Programme of China under contract No.2017YFA0603004the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(Zhanjiang Bay Laboratory)under contract No.ZJW-2019-08+1 种基金the National Natural Science Foundation of China under contract Nos 41825014,41676172 and 41676170the Global Change and Air-Sea Interaction Project of China under contract Nos GASI-02-SCS-YGST2-01,GASI-02-PACYGST2-01 and GASI-02-IND-YGST2-01。
文摘Atmospheric CO_(2)is one of key parameters to estimate air-sea CO_(2)flux.The Orbiting Carbon Observatory-2(OCO-2)satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(XCO_(2))since 2014.In this study,the OCO-2 XCO_(2)products were compared between in-situ data from the Total Carbon Column Network(TCCON)and Global Monitoring Division(GMD),and modeling data from CarbonTracker2019 over global ocean and land.Results showed that the OCO-2 XCO_(2)data are consistent with the TCCON and GMD in situ XCO_(2)data,with mean absolute biases of 0.25×10^(-6)and 0.67×10^(-6),respectively.Moreover,the OCO-2 XCO_(2)data are also consistent with the CarbonTracker2019 modeling XCO_(2)data,with mean absolute biases of 0.78×10^(-6)over ocean and 1.02×10^(-6)over land.The results indicated the high accuracy of the OCO-2 XCO_(2)product over global ocean which could be applied to estimate the air-sea CO_(2)flux.
基金Supported by a thesis research project of General Administration of Quality Supervision, Inspection and Quarantine of China (No. 2010IK168)
文摘An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing in China, and to analyze the main factors affecting the performance of this method. The toxic scallop Patinopecten yessoensis collected from coast of Bohai Sea, China, was used as a test sample in the comparison study. The results were reported and evaluated using robust statistical methods. The z scores showed that 80%, 8%, and 12% of laboratories reported satisfactory results, unsatisfactory results, and questionable results, respectively. This evaluation demonstrates that the PSP mouse bioassay is an appropriate method for screening and testing PSP toxicity in shellfish. However, it was found that the experience and skill of technicians, as well as the body weight and health status of mice being used significantly affected the accuracy of the method.
文摘The REGWQ (Ryan-Einot-Gabriel-Welsch and Quiot) test produces allow us to compare a large numbers of data while controlling the probability of making at least one Type I error or Family wise error. The purpose of this study was to use the REGWQ multiple comparisons test of qualitative data. Okra characterization data was applied and submitted to ANOVA (P_0.05) with REGWQ for multiple comparisons of the means. The results of this study establish a summary strategy of following a significant ANOVA F with REGWQ test on multiple comparisons of means in summation a large entries/treatments to the small groups when variances are heterogeneous. Cluster analysis should be especially useful for grouping qualitative treatment and could also be used in conjunction of with REFWQ multiple produces. The development of study will be in REGWQ multiple producers in SAS option for distributed the large number of treatment to small group with summering the best choice of treatments.
基金Financial support provided by Correlated Solutions Incorporated to perform StereoDIC experimentsthe Department of Mechanical Engineering at the University of South Carolina for simulation studies is deeply appreciated.
文摘To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.
基金This study is supported by the Key Program of Chinese Academy of Sciences KZCX3 SW-221the National Natural Science Foundation of China(Grant No.40233033 and 40221503).
文摘A comparison study is performed to contrast the improvements in the tropical Pacific oceanic state of a low-resolution model respectively via data assimilation and by an increase in horizontal resolution. A low resolution model (LR) (1°lat by 2°lon) and a high-resolution model (HR) (0.5°lat by 0.5°lon) are employed for the comparison. The authors perform 20-yr numerical experiments and analyze the annual mean fields of temperature and salinity. The results indicate that the low-resolution model with data assimilation behaves better than the high-resolution model in the estimation of ocean large-scale features. From 1990 to 2000, the average of HR's RMSE (root-mean-square error) relative to independent Tropical Atmosphere Ocean project (TAO) mooring data at randomly selected points is 0.97℃ compared to a RMSE of 0.56℃ for LR with temperature assimilation. Moreover, the LR with data assimilation is more frugal in computation. Although there is room to improve the high-resolution model, the low-resolution model with data assimilation may be an advisable choice in achieving a more realistic large-scale state of the ocean at the limited level of information provided by the current observational system.
文摘Recently land-use change has been the main concern for worldwide environment change and is being used by city and regional planners to design sustainable cities. Nakuru in the central Rift Valley of Kenya has undergone rapid urban growth in last decade. This paper focused on urban growth using multi-sensor satellite imageries and explored the potential benefits of combining data from optical sensors (Landsat, Worldview-2) with Radar sensor data from Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data for urban land-use mapping. Landsat has sufficient spectral bands allowing for better delineation of urban green and impervious surface, Worldview-2 has a higher spatial resolution and facilitates urban growth mapping while PALSAR has higher temporal resolution compared to other operational sensors and has the capability of penetrating clouds irrespective of weather conditions and time of day, a condition prevalent in Nakuru, because it lies in a tropical area. Several classical and modern classifiers namely maximum likelihood (ML) and support vector machine (SVM) were applied for image classification and their performance assessed. The land-use data of the years 1986, 2000 and 2010 were compiled and analyzed using post classification comparison (PCC). The value of combining multi-temporal Landsat imagery and PALSAR was explored and achieved in this research. Our research illustrated that SVM algorithm yielded better results compared to ML. The integration of Landsat and ALOS PALSAR gave good results compared to when ALOS PAL- SAR was classified alone. 19.70 km2 of land changed to urban land-use from non-urban land-use between the years 2000 to 2010 indicating rapid urban growth has taken place. Land-use information is useful for the comprehensive land-use planning and an integrated management of resources to ensure sustainability of land and to achieve social Eq- uity, economic efficiency and environmental sustainability.
基金National Natural Science Foundation of China(41475120)
文摘Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.
文摘Introduction: The present work compared the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Four popular data mining algorithms (Decision tree, Naive Bayes, Neural network, logistic regression) were used to build the model that predicts whether an individual was being tested for HIV among adults in Ethiopia using EDHS 2011. The final experimentation results indicated that the decision tree (random tree algorithm) performed the best with accuracy of 96%, the decision tree induction method (J48) came out to be the second best with a classification accuracy of 79%, followed by neural network (78%). Logistic regression has also achieved the least classification accuracy of 74%. Objectives: The objective of this study is to compare the prediction power of the different data mining techniques used to develop the HIV testing prediction model. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes. Data preprocessing was performed and missing values for the categorical variable were replaced by the modal value of the variable. Different data mining techniques were used to build the predictive model. Results: The target dataset contained 30,625 study participants. Out of which 16,515 (54%) participants were women while the rest 14,110 (46%) were men. The age of the participants in the dataset ranged from 15 to 59 years old with modal age of 15 - 19 years old. Among the study participants, 17,719 (58%) have never been tested for HIV while the rest 12,906 (42%) had been tested. Residence, educational level, wealth index, HIV related stigma, knowledge related to HIV, region, age group, risky sexual behaviour attributes, knowledge about where to test for HIV and knowledge on family planning through mass media were found to be predictors for HIV testing. Conclusion and Recommendation: The results obtained from this research reveal that data mining is crucial in extracting relevant information for the effective utilization of HIV testing services which has clinical, community and public health importance at all levels. It is vital to apply different data mining techniques for the same settings and compare the model performances (based on accuracy, sensitivity, and specificity) with each other. Furthermore, this study would also invite interested researchers to explore more on the application of data mining techniques in healthcare industry or else in related and similar settings for the future.
基金Sponsored by the Natural Science Fundation of Jiangxi Province(Grant No.20114BAB211026 and 20122BAB201028)the Open Science Fund from Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology(Grant No.2010RGET11)
文摘The extraction of spectral parameters is very difficult because of the limited energy resolution for NaI (TI) gamma-ray detectors. For statistical fluctuation of radioactivity under complex environment, some smoothing filtering methods are proposed to solve the problem. These methods include adopting method of arithmetic moving average, center of gravity, least squares of polynomial, slide converter of discrete funcion convolution etc. The process of spectrum data is realized, and the results are assessed in H/FWHM( Peak High/Full Width at Half Maximum) and peak area based on the Matlab programming. The results indicate that different methods smoothed spectrum have respective superiority in different ergoregion, but the Gaussian function theory in discrete function convolution slide method is used to filter the complex y-spectrum on Embedded system nlatform, and the statistical fluctuation of y-snectrum filtered wall.
文摘Lakes are an important component of the earth climate system. They play an important role in the study of basin weather forecasting, air quality forecasting, and regional climate research. The accuracy of driving variables is the basic premise to ensure the rationality of lake mode simulation. Based on the in-situ observations at Bifenggang site of the Lake Taihu Eddy flux Network from 2012 to 2017, this paper investigated temporal variations in temperature, relative humidity, wind speed, radiation components at different time scales (hourly, seasonal and interannual). ERA5 reanalysis data were compared with in-situ observation to quantify the error and evaluate the performance of reanalysis data. The results show that: 1) On the hourly scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. 2) On the seasonal variation scale, the ERA5 reanalysis data described air temperature, and downward long-wave radiation more accurately. However, the descriptions of wind speed, relative humidity and downward short-wave have large deviations. 3) On the interannual scale, the ERA5 reanalysis data show a good performance for temperature, followed by downward longwave radiation, downward shortwave radiation and relative humidity.
文摘数据驱动的多元化发展导致数据异构性增强、维度提升和特征量规模扩大,给贸易经济分析带来更大挑战。为了提高贸易经济分析的科学性,采用非平行超平面支持向量机算法(support vector machine,SVM)对贸易经济进行预测分析。首先,根据贸易经济影响因素进行主成分分析,获取影响贸易经济的关键特征,并对特征进行量化和去噪处理。然后,采用广义特征值最接近支持向量机(proximal support vector machine via generalized eigenvalues,GEPSVM)进行贸易经济预测分类。根据预测指标要求,选择核函数GEPSVM算法(KGEPSVM算法)对分类的非平行超平面求解,通过类别划分函数获得经济预测结果。实证分析表明,对比常用的非平行超平面支持向量机算法,所提算法的贸易经济预测性能更优,而且在常用贸易经济指标的预测中,表现出较高预测精度和稳定性。