A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne...A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.展开更多
Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering pr...Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering protocol (DSCP) was proposed to solve the data gathering problem in this scenario.In DSCP,a node evaluates the potential lifetime of the network (from its local point of view) assuming that it acts as the cluster head,and claims to be a tentative cluster head if it maximizes the potential lifetime.When evaluating the potential lifetime of the network,a node considers not only its remaining energy,but also other factors including its traffic load,the number of its neighbors,and the traffic loads of its neighbors.A tentative cluster head becomes a final cluster head with a probability inversely proportional to the number of tentative cluster heads that cover its neighbors.The protocol can terminate in O(n/lg n) steps,and its total message complexity is O(n2/lg n).Simulation results show that DSCP can effectively prolong the lifetime of the network in multi-hop networks with unbalanced traffic load.Compared with EECT,the network lifetime is prolonged by 56.6% in average.展开更多
Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. ...Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. Wireless Sensor Network (WSN) being one of the most efficient technologies possesses immense potential to serve major communication purposes including civil, defense and industrial purposes etc. The inclusion of sensor-mobility with WSN has broadened application horizon. The effectiveness of WSNs can be characterized by its ability to perform efficient data gathering and transmission to the base station for decision process. Clustering based routing scheme has been one of the dominating techniques for WSN systems;however key issues like, cluster formation, selection of the number of clusters and cluster heads, and data transmission decision from sensors to the mobile sink have always been an open research area. In this paper, a robust and energy efficient single mobile sink based WSN data gathering protocol is proposed. Unlike existing approaches, an enhanced centralized clustering model is developed on the basis of expectation-maximization (EEM) concept. Further, it is strengthened by using an optimal cluster count estimation technique that ensures that the number of clusters in the network region doesn’t introduce unwanted energy exhaustion. Meanwhile, the relative distance between sensor node and cluster head as well as mobile sink is used to make transmission (path) decision. Results exhibit that the proposed EEM based clustering with optimal cluster selection and optimal dynamic transmission decision enables higher throughput, fast data gathering, minima delay and energy consumption, and higher展开更多
The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mecha...The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mechanisms nowdo not do well in balancing the energy consumption among nodes with different distances to the sink, thus they can hardly avoid the problem that nodes near the sink consume energy more quickly, which may cause the network rupture from the sink node. This paper presents a data gathering mechanism called PODA, which grades the output power of nodes according to their distances from the sink node. PODA balances energy consumption by setting the nodes near the sink with lower output power and the nodes far from the sink with higher output power. Simulation results show that the PODA mechanism can achieve even energy consumption in the entire network, improve energy efficiency and prolong the network lifetime.展开更多
A M_(S)6.8 earthquake occurred on 5th September 2022 in Luding county,Sichuan,China,at 12:52 Beijing Time(4:52 UTC).We complied a dataset of PGA,PGV,and site vS30 of 73 accelerometers and 791 Micro-Electro-Mechanical ...A M_(S)6.8 earthquake occurred on 5th September 2022 in Luding county,Sichuan,China,at 12:52 Beijing Time(4:52 UTC).We complied a dataset of PGA,PGV,and site vS30 of 73 accelerometers and 791 Micro-Electro-Mechanical System(MEMS)sensors within 300 km of the epicenter.The inferred v_(S30)of 820 recording sites were validated.The study results show that:(1)The maximum horizontal PGA and PGV reaches 634.1 Gal and 71.1 cm/s respectively.(2)Over 80%of records are from soil sites.(3)The v_(S30)proxy model of Zhou J et al.(2022)is superior than that of Wald and Allen(2007)and performs well in the study area.The dataset was compiled in a flat file that consists the information of strong-motion instruments,the strong-motion records,and the v_(S30)of the recording sites.The dataset is available at https://www.seismisite.net.展开更多
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ...Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.展开更多
The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectivene...The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.展开更多
This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Databa...This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Database from 2001 to 2022. Employing rigorous longitudinal statistical methods, the study examines the progress achieved over the past two decades. Notably, domestic researchers have displayed considerable interest in the study of Lu You’s English translation works since 2001. The research on the English translation of Lu You’s poetry reveals a diverse range of perspectives, indicating a rich body of scholarship. However, several challenges persist, including insufficient research, limited translation coverage, and a noticeable focus on specific poems such as “Phoenix Hairpin” in the realm of English translation research. Consequently, there is ample room for improvement in the quality of research output on the English translation of Lu You’s poems, as well as its recognition within the academic community. Building on these findings, it is argued that future investigations pertaining to the English translation of Lu You’s poetry should transcend the boundaries of textual analysis and encompass broader theoretical perspectives and research methodologies. By undertaking this shift, scholars will develop a more profound comprehension of Lu You’s poetic works and make substantive contributions to the field of translation studies. Thus, this article aims to bridge the gap between past research endeavors and future possibilities, serving as a guide and inspiration for scholars to embark on a more nuanced and enriching exploration of Lu You’s poetry as well as other Chinese literature classics.展开更多
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du...Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.展开更多
High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the...High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.展开更多
基金supported by the National Natural Science Foundation of China(61307121)ABRP of Datong(2017127)the Ph.D.’s Initiated Research Projects of Datong University(2013-B-17,2015-B-05)
文摘A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.
基金Projects(61173169,61103203)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Post-doctoral Program and the Freedom Explore Program of Central South University,China
文摘Energy-efficient data gathering in multi-hop wireless sensor networks was studied,considering that different node produces different amounts of data in realistic environments.A novel dominating set based clustering protocol (DSCP) was proposed to solve the data gathering problem in this scenario.In DSCP,a node evaluates the potential lifetime of the network (from its local point of view) assuming that it acts as the cluster head,and claims to be a tentative cluster head if it maximizes the potential lifetime.When evaluating the potential lifetime of the network,a node considers not only its remaining energy,but also other factors including its traffic load,the number of its neighbors,and the traffic loads of its neighbors.A tentative cluster head becomes a final cluster head with a probability inversely proportional to the number of tentative cluster heads that cover its neighbors.The protocol can terminate in O(n/lg n) steps,and its total message complexity is O(n2/lg n).Simulation results show that DSCP can effectively prolong the lifetime of the network in multi-hop networks with unbalanced traffic load.Compared with EECT,the network lifetime is prolonged by 56.6% in average.
文摘Recently, the exponential rise in communication system demands has motivated global academia-industry to develop efficient communication technologies to fulfill energy efficiency and Quality of Service (QoS) demands. Wireless Sensor Network (WSN) being one of the most efficient technologies possesses immense potential to serve major communication purposes including civil, defense and industrial purposes etc. The inclusion of sensor-mobility with WSN has broadened application horizon. The effectiveness of WSNs can be characterized by its ability to perform efficient data gathering and transmission to the base station for decision process. Clustering based routing scheme has been one of the dominating techniques for WSN systems;however key issues like, cluster formation, selection of the number of clusters and cluster heads, and data transmission decision from sensors to the mobile sink have always been an open research area. In this paper, a robust and energy efficient single mobile sink based WSN data gathering protocol is proposed. Unlike existing approaches, an enhanced centralized clustering model is developed on the basis of expectation-maximization (EEM) concept. Further, it is strengthened by using an optimal cluster count estimation technique that ensures that the number of clusters in the network region doesn’t introduce unwanted energy exhaustion. Meanwhile, the relative distance between sensor node and cluster head as well as mobile sink is used to make transmission (path) decision. Results exhibit that the proposed EEM based clustering with optimal cluster selection and optimal dynamic transmission decision enables higher throughput, fast data gathering, minima delay and energy consumption, and higher
基金Supported by National Natural Science Foundation of P. R. China (60434030, 60673178)
文摘The data gathering manner of wireless sensor networks, in which data is forwarded towards the sink node, would cause the nodes near the sink node to transmit more data than those far from it. Most data gathering mechanisms nowdo not do well in balancing the energy consumption among nodes with different distances to the sink, thus they can hardly avoid the problem that nodes near the sink consume energy more quickly, which may cause the network rupture from the sink node. This paper presents a data gathering mechanism called PODA, which grades the output power of nodes according to their distances from the sink node. PODA balances energy consumption by setting the nodes near the sink with lower output power and the nodes far from the sink with higher output power. Simulation results show that the PODA mechanism can achieve even energy consumption in the entire network, improve energy efficiency and prolong the network lifetime.
基金supported by the National Natural Science Foundation of China(No.42120104002)the Program of China-Pakistan Joint Research Center on Earth Sciences.
文摘A M_(S)6.8 earthquake occurred on 5th September 2022 in Luding county,Sichuan,China,at 12:52 Beijing Time(4:52 UTC).We complied a dataset of PGA,PGV,and site vS30 of 73 accelerometers and 791 Micro-Electro-Mechanical System(MEMS)sensors within 300 km of the epicenter.The inferred v_(S30)of 820 recording sites were validated.The study results show that:(1)The maximum horizontal PGA and PGV reaches 634.1 Gal and 71.1 cm/s respectively.(2)Over 80%of records are from soil sites.(3)The v_(S30)proxy model of Zhou J et al.(2022)is superior than that of Wald and Allen(2007)and performs well in the study area.The dataset was compiled in a flat file that consists the information of strong-motion instruments,the strong-motion records,and the v_(S30)of the recording sites.The dataset is available at https://www.seismisite.net.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 42188101, and 42241143)the National Key R&D Program of China (Grant Nos. 2022YFF0503700 and 2022YFF0503900)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the Fundamental Research Funds for the Central Universities (Grant No. 2042022kf1012)
文摘Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.
文摘The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.
文摘This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Database from 2001 to 2022. Employing rigorous longitudinal statistical methods, the study examines the progress achieved over the past two decades. Notably, domestic researchers have displayed considerable interest in the study of Lu You’s English translation works since 2001. The research on the English translation of Lu You’s poetry reveals a diverse range of perspectives, indicating a rich body of scholarship. However, several challenges persist, including insufficient research, limited translation coverage, and a noticeable focus on specific poems such as “Phoenix Hairpin” in the realm of English translation research. Consequently, there is ample room for improvement in the quality of research output on the English translation of Lu You’s poems, as well as its recognition within the academic community. Building on these findings, it is argued that future investigations pertaining to the English translation of Lu You’s poetry should transcend the boundaries of textual analysis and encompass broader theoretical perspectives and research methodologies. By undertaking this shift, scholars will develop a more profound comprehension of Lu You’s poetic works and make substantive contributions to the field of translation studies. Thus, this article aims to bridge the gap between past research endeavors and future possibilities, serving as a guide and inspiration for scholars to embark on a more nuanced and enriching exploration of Lu You’s poetry as well as other Chinese literature classics.
文摘Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.
文摘High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.