This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown cova...This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches.展开更多
In the globalized market environment, increasingly significant economic and environmental factors withincomplex industrial plants impose importance on the optimization of global production indices; such opti-mization ...In the globalized market environment, increasingly significant economic and environmental factors withincomplex industrial plants impose importance on the optimization of global production indices; such opti-mization includes improvements in production efficiency, product quality, and yield, along with reductionsof energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelli-gence optimization methods and technologies in improving the performance of global production indicesin mineral processing. First, we provide the problem description. Next, we summarize recent progress indata-based optimization for mineral processing plants. This optimization consists of four layers: optimiza-tion of the target values for monthly global production indices, optimization of the target values for dailyglobal production indices, optimization of the target values for operational indices, and automation systemsfor unit processes. We briefly overview recent progress in each of the different layers. Finally, we point outopportunities for future works in data-based optimization for mineral processing plants.展开更多
In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swa...In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method.展开更多
In this paper,a data-based scheme is proposed to solve the optimal tracking problem of autonomous nonlinear switching systems.The system state is forced to track the reference signal by minimizing the performance func...In this paper,a data-based scheme is proposed to solve the optimal tracking problem of autonomous nonlinear switching systems.The system state is forced to track the reference signal by minimizing the performance function.First,the problem is transformed to solve the corresponding Bellman optimality equation in terms of the Q-function(also named as action value function).Then,an iterative algorithm based on adaptive dynamic programming(ADP)is developed to find the optimal solution which is totally based on sampled data.The linear-in-parameter(LIP)neural network is taken as the value function approximator.Considering the presence of approximation error at each iteration step,the generated approximated value function sequence is proved to be boundedness around the exact optimal solution under some verifiable assumptions.Moreover,the effect that the learning process will be terminated after a finite number of iterations is investigated in this paper.A sufficient condition for asymptotically stability of the tracking error is derived.Finally,the effectiveness of the algorithm is demonstrated with three simulation examples.展开更多
This paper focuses on developing a system that allows presentation authors to effectively retrieve presentation slides for reuse from a large volume of existing presentation materials. We assume episodic memories of t...This paper focuses on developing a system that allows presentation authors to effectively retrieve presentation slides for reuse from a large volume of existing presentation materials. We assume episodic memories of the authors can be used as contextual keywords in query expressions to efficiently dig out the expected slides for reuse rather than using only the part-of-slide-descriptions-based keyword queries. As a system, a new slide repository is proposed, composed of slide material collections, slide content data and pieces of information from authors' episodic memories related to each slide and presentation together with a slide retrieval application enabling authors to use the episodic memories as part of queries. The result of our experiment shows that the episodic memory-used queries can give more discoverability than the keyword-based queries. Additionally, an improvement model is discussed on the slide retrieval for further slide-finding efficiency by expanding the episodic memories model in the repository taking in the links with the author-and-slide-related data and events having been post on the private and social media sites.展开更多
To cope with the challenges of CoViD-19,europe has adopted relevant measures of a data-based approach to governance,on which scholars have huge differences,and the related researches are conducive to further discussio...To cope with the challenges of CoViD-19,europe has adopted relevant measures of a data-based approach to governance,on which scholars have huge differences,and the related researches are conducive to further discussion on the differences.By sorting out the challenges posed by the pandemic to public security and data protection in europe,we can summarize the“european Solution”of the data-based approach to governance,including legislation,instruments,supervision,international cooperation,and continuity.The“Solution”has curbed the spread of the pandemic to a certain extent.However,due to the influence of the traditional values of the EU,the“Solution”is too idealistic in the balance between public security and data protection,which intensifies the dilemma and causes many problems,such as ambiguous legislation,inadequate effectiveness and security of instruments,an arduous endeavor in inter national cooperation,and imperfect regulations on digital green certificates.Therefore,in a major public health crisis,there is still a long way to go in exploring a balance between public security and data protection.展开更多
In this paper, the data-based control problem is investigated for a class of networked nonlinear systems with measurement noise as well as packet dropouts in the feedback and forward channels. The measurement noise an...In this paper, the data-based control problem is investigated for a class of networked nonlinear systems with measurement noise as well as packet dropouts in the feedback and forward channels. The measurement noise and the number of consecutive packet dropouts in both channels are assumed to be random but bounded. A data-based networked predictive control method is proposed, in which a sequence of control increment predictions are calculated in the controller based on the measured output error, and based on the control increment predictions received by the actuator, a proper control action is obtained and applied to the plant according to the real-time number of consecutive packet dropouts at each sampling instant. Then the stability analysis is performed for the networked closedloop system. Finally, the effectiveness of the proposed method is illustrated by a numerical example.展开更多
Sampled-data (SD) based linear quadratic (LQ) control problem of stochastic linear continuous-time (LCT) systems is discussed. Two types of systems are involved. One is time-invariant and the other is time-varying. In...Sampled-data (SD) based linear quadratic (LQ) control problem of stochastic linear continuous-time (LCT) systems is discussed. Two types of systems are involved. One is time-invariant and the other is time-varying. In addition to stability analysis of the closed-loop systems, the index difference between SD-based LQ control and conventional LQ control is investigated. It is shown that when sample time ?T is small, so is the index difference. In addition, the upper bounds of the differences are also presented, which are O(?T2) and O(?T), respectively.展开更多
With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview ...With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview of data-based control,which divides it into two subfields,intelligent modeling and direct controller design.In the two subfields,some important methods concerning data-based control are intensively investigated.Within the framework of data-based modeling,main modeling technologies and control strategies are discussed,and then fundamental concepts and various algorithms are presented for the design of a data-based controller.Finally,some remaining challenges are suggested.展开更多
This paper describes a building subsidence deformation prediction model with the self-memorization principle.According to the non-linear specificity and monotonic growth characteristics of the time series of building ...This paper describes a building subsidence deformation prediction model with the self-memorization principle.According to the non-linear specificity and monotonic growth characteristics of the time series of building subsidence deformation,a data-based mechanistic self-memory model considering randomness and dynamic features of building subsidence deformation is established based on the dynamic data retrieved method and the self-memorization equation.This model first deduces the differential equation of the building subsidence deformation system using the dynamic retrieved method,which treats the monitored time series data as particular solutions of the nonlinear dynamic system.Then,the differential equation is evolved into a difference-integral equation by the self-memory function to establish the self-memory model of dynamic system for predicting nonlinear building subsidence deformation.As the memory coefficients of the proposed model are calculated with historical data,which contain useful information for the prediction and overcome the shortcomings of the average prediction,the model can predict extreme values of a system and provide higher fitting precision and prediction accuracy than deterministic or random statistical prediction methods.The model was applied to subsidence deformation prediction of a building in Xi'an.It was shown that the model is valid and feasible in predicting building subsidence deformation with good accuracy.展开更多
文摘This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise.The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system.Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering,we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points,reduces distant point influence,and lowers computational cost.Then,by introducing the weighted maximum likelihood,we propose a semi-definite program(SDP)to detect outliers and reduce their impacts on each cluster.Detecting these weights paves the way to obtain an appropriate covariance of the output noise.Next,two filtering approaches are presented:a cluster-based robust linear filter using the maximum a posterior(MAP)estimation and a clusterbased robust nonlinear filter assuming that output noise distribution stems from some Gaussian noise resources according to the ellipsoidal clusters.At last,simulation results demonstrate the effectiveness of our proposed filtering approaches.
文摘In the globalized market environment, increasingly significant economic and environmental factors withincomplex industrial plants impose importance on the optimization of global production indices; such opti-mization includes improvements in production efficiency, product quality, and yield, along with reductionsof energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelli-gence optimization methods and technologies in improving the performance of global production indicesin mineral processing. First, we provide the problem description. Next, we summarize recent progress indata-based optimization for mineral processing plants. This optimization consists of four layers: optimiza-tion of the target values for monthly global production indices, optimization of the target values for dailyglobal production indices, optimization of the target values for operational indices, and automation systemsfor unit processes. We briefly overview recent progress in each of the different layers. Finally, we point outopportunities for future works in data-based optimization for mineral processing plants.
基金supported in part by the National Natural ScienceFoundation of China(61533017,61973330,61773075,61603387)the Early Career Development Award of SKLMCCS(20180201)the State Key Laboratory of Synthetical Automation for Process Industries(2019-KF-23-03)。
文摘In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method.
基金supported by the National Natural Science Foundation of China(61921004,U1713209,61803085,and 62041301)。
文摘In this paper,a data-based scheme is proposed to solve the optimal tracking problem of autonomous nonlinear switching systems.The system state is forced to track the reference signal by minimizing the performance function.First,the problem is transformed to solve the corresponding Bellman optimality equation in terms of the Q-function(also named as action value function).Then,an iterative algorithm based on adaptive dynamic programming(ADP)is developed to find the optimal solution which is totally based on sampled data.The linear-in-parameter(LIP)neural network is taken as the value function approximator.Considering the presence of approximation error at each iteration step,the generated approximated value function sequence is proved to be boundedness around the exact optimal solution under some verifiable assumptions.Moreover,the effect that the learning process will be terminated after a finite number of iterations is investigated in this paper.A sufficient condition for asymptotically stability of the tracking error is derived.Finally,the effectiveness of the algorithm is demonstrated with three simulation examples.
文摘This paper focuses on developing a system that allows presentation authors to effectively retrieve presentation slides for reuse from a large volume of existing presentation materials. We assume episodic memories of the authors can be used as contextual keywords in query expressions to efficiently dig out the expected slides for reuse rather than using only the part-of-slide-descriptions-based keyword queries. As a system, a new slide repository is proposed, composed of slide material collections, slide content data and pieces of information from authors' episodic memories related to each slide and presentation together with a slide retrieval application enabling authors to use the episodic memories as part of queries. The result of our experiment shows that the episodic memory-used queries can give more discoverability than the keyword-based queries. Additionally, an improvement model is discussed on the slide retrieval for further slide-finding efficiency by expanding the episodic memories model in the repository taking in the links with the author-and-slide-related data and events having been post on the private and social media sites.
基金the phased achievement of the major research project of the National Social Science Fund of China(Project Approval No.21VGQ010)supported by the 2021 Central University Basic Scientific Research Project of Lanzhou University(Project Approval No.21lzujbkyjd002).
文摘To cope with the challenges of CoViD-19,europe has adopted relevant measures of a data-based approach to governance,on which scholars have huge differences,and the related researches are conducive to further discussion on the differences.By sorting out the challenges posed by the pandemic to public security and data protection in europe,we can summarize the“european Solution”of the data-based approach to governance,including legislation,instruments,supervision,international cooperation,and continuity.The“Solution”has curbed the spread of the pandemic to a certain extent.However,due to the influence of the traditional values of the EU,the“Solution”is too idealistic in the balance between public security and data protection,which intensifies the dilemma and causes many problems,such as ambiguous legislation,inadequate effectiveness and security of instruments,an arduous endeavor in inter national cooperation,and imperfect regulations on digital green certificates.Therefore,in a major public health crisis,there is still a long way to go in exploring a balance between public security and data protection.
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61673023,61203230,61273104,61333003,61210012,and 61490701the Beijing Municipal Natural Science Foundation under Grant No.4152014+3 种基金the Great Wall Scholar Candidate Training Program of North China University of Technology(NCUT)the Excellent Youth Scholar Nurturing Program of NCUTthe Outstanding Young Scientist Award Foundation of Shandong Province of China under Grant No.BS2013DX015the Research Fund for the Taishan Scholar Project of Shandong Province of China
文摘In this paper, the data-based control problem is investigated for a class of networked nonlinear systems with measurement noise as well as packet dropouts in the feedback and forward channels. The measurement noise and the number of consecutive packet dropouts in both channels are assumed to be random but bounded. A data-based networked predictive control method is proposed, in which a sequence of control increment predictions are calculated in the controller based on the measured output error, and based on the control increment predictions received by the actuator, a proper control action is obtained and applied to the plant according to the real-time number of consecutive packet dropouts at each sampling instant. Then the stability analysis is performed for the networked closedloop system. Finally, the effectiveness of the proposed method is illustrated by a numerical example.
基金This work was supported by the National Natural Science Foundation of China.
文摘Sampled-data (SD) based linear quadratic (LQ) control problem of stochastic linear continuous-time (LCT) systems is discussed. Two types of systems are involved. One is time-invariant and the other is time-varying. In addition to stability analysis of the closed-loop systems, the index difference between SD-based LQ control and conventional LQ control is investigated. It is shown that when sample time ?T is small, so is the index difference. In addition, the upper bounds of the differences are also presented, which are O(?T2) and O(?T), respectively.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60874013,60953001 and 61034002).
文摘With the ever increasing complexity of industrial systems,model-based control has encountered difficulties and is facing problems,while the interest in data-based control has been booming.This paper gives an overview of data-based control,which divides it into two subfields,intelligent modeling and direct controller design.In the two subfields,some important methods concerning data-based control are intensively investigated.Within the framework of data-based modeling,main modeling technologies and control strategies are discussed,and then fundamental concepts and various algorithms are presented for the design of a data-based controller.Finally,some remaining challenges are suggested.
基金supported by the Twelfth Five National Key Technology R&D Program of China (2009BAJ28B04,2011BAK07B01,2011BAJ08B03,2011BAJ08B05)the National Natural Science Foundation of China(51108428)+1 种基金Beijing Postdoctoral Research Foundation (2012ZZ-17)China Postdoctoral Science Foundation (2011M500199)
文摘This paper describes a building subsidence deformation prediction model with the self-memorization principle.According to the non-linear specificity and monotonic growth characteristics of the time series of building subsidence deformation,a data-based mechanistic self-memory model considering randomness and dynamic features of building subsidence deformation is established based on the dynamic data retrieved method and the self-memorization equation.This model first deduces the differential equation of the building subsidence deformation system using the dynamic retrieved method,which treats the monitored time series data as particular solutions of the nonlinear dynamic system.Then,the differential equation is evolved into a difference-integral equation by the self-memory function to establish the self-memory model of dynamic system for predicting nonlinear building subsidence deformation.As the memory coefficients of the proposed model are calculated with historical data,which contain useful information for the prediction and overcome the shortcomings of the average prediction,the model can predict extreme values of a system and provide higher fitting precision and prediction accuracy than deterministic or random statistical prediction methods.The model was applied to subsidence deformation prediction of a building in Xi'an.It was shown that the model is valid and feasible in predicting building subsidence deformation with good accuracy.