期刊文献+
共找到316,302篇文章
< 1 2 250 >
每页显示 20 50 100
Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation
1
作者 Dan Yu Xingjun Li +2 位作者 Samuel Simon Araya Simon Lennart Sahlin Vincenzo Liso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期544-558,共15页
Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr... Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application. 展开更多
关键词 PEM fuel cell data-driven diagnosis Robustness improvement and evaluation Electrochemical impedance spectroscopy
下载PDF
Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat 被引量:1
2
作者 Zhikai Cheng Xiaobo Gu +5 位作者 Yadan Du Zhihui Zhou Wenlong Li Xiaobo Zheng Wenjing Cai Tian Chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1523-1540,共18页
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m... In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching. 展开更多
关键词 mulched winter wheat machine learning fuzzy comprehensive evaluation comprehensive growth evaluation index unmanned aerial vehicle
下载PDF
Comparative evaluation of commercial Douchi by different molds:biogenic amines,non-volatile and volatile compounds 被引量:1
3
作者 Aijun Li Gang Yang +4 位作者 Zhirong Wang Shenglan Liao Muying Du Jun Song Jianquan Kan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期434-443,共10页
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer... To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production. 展开更多
关键词 DOUCHI Starting strains Non-volatile compounds Volatile compounds Sensory evaluation
下载PDF
Shale gas production evaluation framework based on data-driven models 被引量:4
4
作者 You-Wei He Zhi-Yue He +3 位作者 Yong Tang Ying-Jie Xu Ji-Chang Long Kamy Sepehrnoori 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1659-1675,共17页
Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to... Increasing the production and utilization of shale gas is of great significance for building a clean and low-carbon energy system.Sharp decline of gas production has been widely observed in shale gas reservoirs.How to forecast shale gas production is still challenging due to complex fracture networks,dynamic fracture properties,frac hits,complicated multiphase flow,and multi-scale flow as well as data quality and uncertainty.This work develops an integrated framework for evaluating shale gas well production based on data-driven models.Firstly,a comprehensive dominated-factor system has been established,including geological,drilling,fracturing,and production factors.Data processing and visualization are required to ensure data quality and determine final data set.A shale gas production evaluation model is developed to evaluate shale gas production levels.Finally,the random forest algorithm is used to forecast shale gas production.The prediction accuracy of shale gas production level is higher than 95%based on the shale gas reservoirs in China.Forty-one wells are randomly selected to predict cumulative gas production using the optimal regression model.The proposed shale gas production evaluation frame-work overcomes too many assumptions of analytical or semi-analytical models and avoids huge computation cost and poor generalization for numerical modelling. 展开更多
关键词 Shale gas Production evaluation Production prediction data-driven models Carbon neutrality
下载PDF
Identification and evaluation of shale oil micromigration and its petroleum geological significance 被引量:1
5
作者 HU Tao JIANG Fujie +10 位作者 PANG Xiongqi LIU Yuan WU Guanyun ZHOU Kuo XIAO Huiyi JIANG Zhenxue LI Maowen JIANG Shu HUANG Liliang CHEN Dongxia MENG Qingyang 《Petroleum Exploration and Development》 SCIE 2024年第1期127-140,共14页
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil... Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale. 展开更多
关键词 shale oil micro-migration identification micro-migration evaluation Junggar Basin Mahu Sag Lower Permian Fengcheng Formation hydrocarbon expulsion potential method
下载PDF
Comprehensive Evaluation of Flower Border Application Value of New and Superior Plants in Hefei Area 被引量:1
6
作者 MENG Yi ZHAO Zhiyan +1 位作者 LIANG Tingwu LU Zhaoliang 《Journal of Landscape Research》 2024年第2期69-71,76,共4页
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc... An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei. 展开更多
关键词 Analytic hierarchy process(AHP) New and superior variety Application value Comprehensive evaluation
下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network
7
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
下载PDF
PARE:Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things
8
作者 Peicong He Yang Xin Yixian Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3067-3084,共18页
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters... The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection. 展开更多
关键词 Spatial crowdsourcing PRIVACY-PRESERVING data evaluation IOT blockchain
下载PDF
A Trust Evaluation Mechanism Based on Autoencoder Clustering Algorithm for Edge Device Access of IoT
9
作者 Xiao Feng Zheng Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第2期1881-1895,共15页
First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism... First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy. 展开更多
关键词 Cross-domain authentication trust evaluation autoencoder
下载PDF
Landslide hazard susceptibility evaluation based on SBAS-InSAR technology and SSA-BP neural network algorithm:A case study of Baihetan Reservoir Area
10
作者 GUO Junqi XI Wenfei +4 位作者 YANG Zhiquan SHI Zhengtao HUANG Guangcai YANG Zhengrong YANG Dongqing 《Journal of Mountain Science》 SCIE CSCD 2024年第3期952-972,共21页
Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calcu... Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions. 展开更多
关键词 Baihetan SBAS-InSAR SSA-BP Landslide hazard susceptibility evaluation
下载PDF
Evaluation of a Rapid Diagnostic Test, Boson Biotech SARS CoV-2 Ag, for the Detection of SARS-CoV-2 in Gabon
11
作者 Samira Zoa Assoumou Ulrich Leger Davy Mouangala +6 位作者 Ludovic Mewono Davy-Christ Angoune Ndong Guy Paterne Malonga Mbembo Nely Meungang Alain Moutsinga Elvyre Anita Mbongo Kama Rodrigue Mintsa Nguema 《Advances in Infectious Diseases》 CAS 2024年第2期469-477,共9页
1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is... 1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission. 展开更多
关键词 SARS-CoV-2 Rapid Diagnostic Test evaluation COVID-19 ANTIGEN Performance
下载PDF
Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation
12
作者 Tong Yu Chunyang Wang +1 位作者 Huicong Yang Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期191-204,I0006,共15页
Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical ener... Metal-ion batteries(MIBs),including alkali metal-ion(Li^(+),Na^(+),and K^(3)),multi-valent metal-ion(Zn^(2+),Mg^(2+),and Al^(3+)),metal-air,and metal-sulfur batteries,play an indispensable role in electrochemical energy storage.However,the performance of MIBs is significantly influenced by numerous variables,resulting in multi-dimensional and long-term challenges in the field of battery research and performance enhancement.Machine learning(ML),with its capability to solve intricate tasks and perform robust data processing,is now catalyzing a revolutionary transformation in the development of MIB materials and devices.In this review,we summarize the utilization of ML algorithms that have expedited research on MIBs over the past five years.We present an extensive overview of existing algorithms,elucidating their details,advantages,and limitations in various applications,which encompass electrode screening,material property prediction,electrolyte formulation design,electrode material characterization,manufacturing parameter optimization,and real-time battery status monitoring.Finally,we propose potential solutions and future directions for the application of ML in advancing MIB development. 展开更多
关键词 Metal-ion battery Machine learning Electrode materials CHARACTERIZATION Status evaluation
下载PDF
A Quality Evaluation System for Dissertation Based on Fuzzy Analytic Hierarchy Process
13
作者 Kang Xu Zhenhao Zhang +4 位作者 Shuo Wang Yunhui Lv Jiafei Li Xiaodan Cai Yongchun Cui 《Applied Mathematics》 2024年第7期441-454,共14页
A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. T... A dissertation is a research report or scientific paper written by an author to obtain a certain degree. It reflects postgraduates’ research achievements and the educational quality of an institute, even a country. To construct an optimized quality evaluation system for postgraduate dissertation (QESPD), we summarized the influencing factors and invited 10 experienced specialists to rate and prioritize them based on fuzzy analytic hierarchy process. Four primary indicators (innovation, integrity, scientificity and normativity) and 16 sub-indicators were selected to form the evaluation system. The order of primary indicators by weight, was innovation (0.4269), scientificity (0.2807), integrity (0.1728) and normativity (0.1196). The top five sub-dimensions were theoretical originality, scientific value, data reliability, design rationality and evidence credibility. To demonstrate the effectiveness of the proposed system, a case study was performed. In the case study, it was demonstrated that the established two-index-hierarchy QESPD in this study was a more scientific and reasonable evaluation system worthy of promotion and application. 展开更多
关键词 DISSERTATION Quality evaluation Indicator System Fuzzy Analytic Hierarchy Process Case Study
下载PDF
Comprehensive Evaluation of Distributed PV Grid-Connected Based on Combined Weighting Weights and TOPSIS-RSR Method
14
作者 Yue Yang Jiarui Zheng +2 位作者 Long Cheng Yongnan Zhu Hao Wu 《Energy Engineering》 EI 2024年第3期703-728,共26页
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj... To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified. 展开更多
关键词 Distributed PV grid-connected comprehensive evaluation evaluation indicator system combined subjective and objective empowerment TOPSIS-RSR method
下载PDF
A Systematic Review and Performance Evaluation of Open-Source Tools for Smart Contract Vulnerability Detection
15
作者 Yaqiong He Jinlin Fan Huaiguang Wu 《Computers, Materials & Continua》 SCIE EI 2024年第7期995-1032,共38页
With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges su... With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value. 展开更多
关键词 Blockchain security ethereum smart contracts detection tools evaluation
下载PDF
A stability evaluation method for deep-seated toppling in the upper Lancang river,Southwestern China
16
作者 Yibing Ning Huiming Tang +3 位作者 Jianbing Peng Yanjun Shen John V.Smith Bocheng Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2388-2410,共23页
Deep-seated toppling in the upper reaches of the Lancang River,southwest China involves deformations exceeding 100 m in depth.The slope deformation is initiated by river downcutting and evolves distinctive characteris... Deep-seated toppling in the upper reaches of the Lancang River,southwest China involves deformations exceeding 100 m in depth.The slope deformation is initiated by river downcutting and evolves distinctive characteristics with a depth of river incision.In this study,we propose a system for evaluating the stability of deep-seated toppled slopes in different evolutionary stages.This system contains identification criteria for each evolutionary stage and provides the corresponding stability evaluation methods.Based on the mechanical and kinematic analysis of slope blocks,the specific stage of slope movement can be identified in the field through outcrop mapping,in situ tests,surface displacement monitoring,and adit and borehole explorations.The stability evaluation methods are established based on the limiting equilibrium theory and the strain compatibility between the undisturbed zone and the toppled zone.Finally,several sample slopes in different evolution stages have been investigated to verify the applicability and accuracy of the proposed stability evaluation system.The results indicate that intense tectonic activity and rapid river incision lead to a maximum principal stress ratio exceeding 10 near the slope surface,thus triggering widespread toppling deformations along the river valley.When considering the losses of joint cohesion during the further rotation process,the safety factor of the slope drops by 7%e28%.The self-stabilization of toppling deformation can be recognized by the layer symmetry configuration after the free rotation of the deflected layers.Intensely toppled rock blocks mainly suffer sliding failures beyond the layer symmetry condition.The factor of safety of the K73 rockslide decreased from 1.17 to 0.87 by considering the development of the potential sliding surface and the toesaturated zone. 展开更多
关键词 Stability evaluation Deep-seated toppling Evolutionary process Reservoir impoundment Rock slope
下载PDF
Unequal Distribution of Innovation Efforts for Neglected Tropical Diseases: The Role of Funding Evaluation Criteria
17
作者 Anne M. G. Neevel Kenneth D. S. Fernald Linda H. M. van de Burgwal 《Health》 2024年第5期490-520,共31页
Background: International research and innovation efforts for neglected tropical diseases have increased in recent decades due to disparities in overall health research funding in relation to global burden of disease.... Background: International research and innovation efforts for neglected tropical diseases have increased in recent decades due to disparities in overall health research funding in relation to global burden of disease. However, within the field of neglected tropical diseases some seem far more neglected than others. In this research the aim is to investigate the distribution of resources and efforts, as well as the mechanisms that underpin funding allocation for neglected tropical diseases. Methodology: A systematic literature review was conducted to establish a comprehensive overview of known indicators for innovation efforts related to a wide range of neglected tropical diseases. Articles were selected based on a subjective evaluation of their relevance, the presence of original data, and the breadth of their scope. This was followed by thirteen in-depth open-ended interviews with representatives of private, public and philanthropic funding organizations, concerning evaluation criteria for funding research proposals. Results: The findings reveal a large difference in the extent to which the individual diseases are neglected with notable differences between absolute and relative efforts. Criteria used in the evaluation of research proposals relate to potential impact, the probability of success and strategic fit. Private organizations prioritize strategic fit and economic impact;philanthropic organizations prioritize short-term societal impact;and public generally prioritize the probability of success by accounting for follow-up funding and involvement of industry. Funding decisions of different types of organizations are highly interrelated. Conclusions: This study shows that the evaluation of funding proposals introduces and retains unequal funding distribution, reinforcing the relative neglect of diseases. Societal impact is the primary rationale for funding but application of it as a funding criterion is associated with significant challenges. Furthermore, current application of evaluation criteria leads to a primary focus on short-term impact. Through current practice, the relatively most neglected diseases will remain so, and a long-term strategy is needed to resolve this. 展开更多
关键词 Neglected Tropical Diseases Funding Decision evaluation Criteria Health Research Funding Research Impact
下载PDF
Towards trustworthy multi-modal motion prediction:Holistic evaluation and interpretability of outputs
18
作者 Sandra Carrasco Limeros Sylwia Majchrowska +3 位作者 Joakim Johnander Christoffer Petersson MiguelÁngel Sotelo David Fernández Llorca 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期557-572,共16页
Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of po... Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of possible future trajectories can be consid-erable(multi-modal).Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpret-ability.Moreover,the metrics used in current benchmarks do not evaluate all aspects of the problem,such as the diversity and admissibility of the output.The authors aim to advance towards the design of trustworthy motion prediction systems,based on some of the re-quirements for the design of Trustworthy Artificial Intelligence.The focus is on evaluation criteria,robustness,and interpretability of outputs.First,the evaluation metrics are comprehensively analysed,the main gaps of current benchmarks are identified,and a new holistic evaluation framework is proposed.Then,a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system.To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework,an intent prediction layer that can be attached to multi-modal motion prediction models is proposed.The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi-modal trajectories and intentions.The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autono-mous vehicles,advancing the field towards greater safety and reliability. 展开更多
关键词 autonomous vehicles evaluation INTERPRETABILITY multi-modal motion prediction ROBUSTNESS trustworthy AI
下载PDF
A new method for quantitative evaluation of shale laminae using electrical image logging
19
作者 Zhou Feng Hongliang Wu +4 位作者 Weilin Yan Han Tian Jiandong Zheng Chaoliu Li Kewen Wang 《Energy Geoscience》 EI 2024年第3期93-102,共10页
Shale oil reservoirs are generally characterized by complex mineral compositions, rapid lithofacies changes, and thin laminae. Explorations have confirmed that the type and density of shale laminae significantly influ... Shale oil reservoirs are generally characterized by complex mineral compositions, rapid lithofacies changes, and thin laminae. Explorations have confirmed that the type and density of shale laminae significantly influence reservoir quality, highlighting the importance of accurately identifying these laminae through well logging for effective shale reservoir evaluation. Presently, relevant technologies primarily focus on the qualitative identification of shale laminae using vertical slab images from image logs. However, influenced by the complex borehole conditions and image logging quality, this approach is less effective in identifying millimeter-scale laminae. This study proposes a new method for achieving high-resolution slab images and quantitatively evaluating the laminae using electrical image logs. The new method effectively improves the processing accuracy of slab images by delicately flattening and aligning the button electrode curves derived from electrical image logs point by point. Meanwhile, it allows for the accurate quantitative evaluation of the lamina number through precise identification of peaks and troughs in microelectrode curves. As demonstrated by the applications in shale oil reservoirs in the Gulong area in Daqing and the Ganchagou area in Qinghai, the proposed method can significantly improve accuracy compared to traditional slab images. Furthermore, the lamination index calculated using this method is highly consistent with the lamina number observed in cores. This study provides a new technical method for the quantitative lamina evaluation and rock structure analysis of shale reservoirs. 展开更多
关键词 Shale oil Slab image Lamina evaluation Lamination index
下载PDF
Evaluation of Resistance of Different Kiwifruit Varieties (Lines) to Canker Disease and Brown Spot Disease
20
作者 Wenwen Su Chongpei Zheng +5 位作者 Zhencheng Han Chunguang Ren Di Wu Tao Li Yi Yang Weijie Li 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1249-1261,共13页
Kiwifruit canker and brown spot are significant diseases affecting kiwis,caused by Pseudomonas syringae patho-genic variations(Pseudomonas syringae pv.Actinidiae(Psa))and Corynesporapolytica(Corynespora cassiicola).At ... Kiwifruit canker and brown spot are significant diseases affecting kiwis,caused by Pseudomonas syringae patho-genic variations(Pseudomonas syringae pv.Actinidiae(Psa))and Corynesporapolytica(Corynespora cassiicola).At present,the research on canker disease and brown spot disease mainly focuses on the isolation and identification of pathogenic bacteria,drug control,resistance gene mining and functional verification.Practice has proved that breeding disease resistant varieties are an effective method to control canker disease and brown spot disease.However,most existing cultivars lack genes for canker and brown spot resistance.Wild kiwifruit resources in nat-ure exhibit extensive genetic diversity due to prolonged natural selection,containing numerous resistance genes.But,due to insufficient understanding of the resistance of most kiwifruit varieties(lines)to canker disease and brown spot disease,some high-quality resources have not been fully utilized.The incidence of canker and brown spot of 18 kiwifruit cultivars(lines)was measured by inoculating isolated branches and leaves,and their resistance to canker and brown spot was analyzed according to the length,disease index,mean diameter,and systematic clustering.The results were as follows:Among 18 different kiwifruit varieties(lines)for canker disease,there were two highly resistant materials,eight disease-resistant materials,four disease-susceptible materials,and two highly susceptible materials.Moreover,regarding brown spot disease,there were one highly resistant material,five dis-ease-resistant materials,four susceptible materials,and three highly susceptible materials.Furthermore,four resources were resistant to both diseases.The outcomes provided a theoretical basis for breeding kiwifruit against canker and brown spot. 展开更多
关键词 KIWIFRUIT canker disease brown spot resistance evaluation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部