期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于三维分类网络的前列腺辅助诊断 被引量:2
1
作者 苏庆华 张姗姗 +6 位作者 蔡磊 谷焓 李奕飞 俞戈昊 江方舟 白翰林 赵地 《中国数字医学》 2019年第3期18-21,共4页
现代医学对数据可视化、科学化的分析需求增加,也增加了对医学影像的依赖性。但对于计算机而言,生物图像极为抽象,生物图像识别至今仍处于探索阶段,同时,对大、复杂三维医学图像特征提取和图像识别难度大。目前采用卷积神经网络对三维... 现代医学对数据可视化、科学化的分析需求增加,也增加了对医学影像的依赖性。但对于计算机而言,生物图像极为抽象,生物图像识别至今仍处于探索阶段,同时,对大、复杂三维医学图像特征提取和图像识别难度大。目前采用卷积神经网络对三维医学图像进行训练处理,由于训练数据集数量不足,经常出现过拟合现象。针对这些问题,基于TensorFlow深度学习框架,提出了一种新的前列腺辅助诊断模型。模型优化了深度学习网络层次,采用较少的参数加快训练速度,还能降低过拟合的可能性,此外还利用两种数据扩展方式进行数据扩充,并采用了dropout方法以避免过拟合。训练及测试结果表明,模型能够对大部分前列腺三维图像进行分类,判断出图像是否存在异常,正确率超过70%,优于同种条件下训练出的3DAlexNet网络图片分类模型。 展开更多
关键词 卷积神经网络 三维数据集 图片识别 数据扩充 过拟合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部