Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, ...A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, such as 3nm nitrided oxide, dual poly Si gate electrode, novel super steep retrograde channel doping by heavy ion implantation, ultra shallow S/D extension formed by Ge PAI(Pre Amorphism Implantation) plus LEI(Low Energy Implantation), thin and low resistance Ti SALICIDE by Ge PAI and special cleaning, etc. The shortest channel length of the CMOS device is 70nm. The threshold voltages, G m and off current are 0 28V,490mS·mm -1 and 0 08nA/μm for NMOS and -0 3V,340mS·mm -1 and 0 2nA/μm for PMOS, respectively. Delays of 23 5ps/stage at 1 5V, 17 5ps/stage at 2 0V and 12 5ps/stage at 3V are achieved in the 57 stage unloaded 100nm CMOS ring oscillator circuits.展开更多
Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes w...Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes was designed to generate Dean flow,which was used to enhance the liquid-liquid micromixing performance.The Villermaux-Dushman probe reaction was employed to characterize the micromixing performance in different curved capillary microreactors.The effects of experiment parameters such as liquid flow rate,inner diameter,tube length,and curve diameter on micromixing performance were systematically investigated.Under the optimal conditions,the minimum value of the segmentation factor XS was 0.008.It was worth noting that at the low Reynolds number(Re<30),the change of curved shape on the capillary microreactor can significantly improve the micromixing performance with XS reduced by 37.5%.Further,the correlations of segment index XS with dimensionless factor such as Reynolds number or Dean number were developed,which can be used to predict the liquid-liquid micromixing performance in capillary microreactors.展开更多
Despite the long history of research that has focused on the role of defects on device performance, the studies have not always been fruitful. A major reason is because these defect studies have typically been conduct...Despite the long history of research that has focused on the role of defects on device performance, the studies have not always been fruitful. A major reason is because these defect studies have typically been conducted in a parallel mode wherein the semiconductor wafer was divided into multiple pieces for separate optical and structural characterization, as well as device fabrication and evaluation. The major limitation of this approach was that either the defect being investigated by structural characterization techniques was not the same defect that was affecting the device performance or else the defect was not characterized under normal device operating conditions. In this review, we describe a more comprehensive approach to defect study, namely a series mode, using an array of spatially-resolved optical, electrical, and structural characterization techniques, all at the individual defect level but applied sequentially on a fabricated device. This novel sequential approach enables definitive answers to key questions, such as:(ⅰ) how do individual defects affect device performance?(ⅱ) how does the impact depend on the device operation conditions?(ⅲ) how does the impact vary from one defect to another? Implementation of this different approach is illustrated by the study of individual threading dislocation defects in GaAs solar cells. Additionally,we briefly describe a 3-D Raman thermometry method that can also be used for investigating the roles of defects in high power devices and device failure mechanisms.展开更多
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
The triptych (Smartphones, Video games, adolescents) has imposed itself on the collective consciousness in the form of questioning to the point of becoming a social phenomenon. It thus raises concerns about the uses t...The triptych (Smartphones, Video games, adolescents) has imposed itself on the collective consciousness in the form of questioning to the point of becoming a social phenomenon. It thus raises concerns about the uses that adolescents make of it and the effects on their academic performance, which we proposed to study among middle school students from the Dakar academy inspection. Where appropriate, we used mixed methods with the collection techniques of questionnaire survey, semi-structured interviews respectively with middle school students, adults (parents, supervisors, teachers, etc.), participant observation and literature review. Concretely, before accessibility to video games, the middle school students were more idle and well-behaved, watched a lot of TV, played with their brothers and sisters or did household chores. The majority of young people had good, very good or excellent conduct and their averages were fair, fairly good or good. With access to a diverse digital environment, middle school students have passionately turned to video games. As a result, their learning time, concentration and submission to parental injunctions have declined significantly. This situation negatively affected their academic performance and encouraged bad behavior.展开更多
The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytica...The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytical expressions of the temperature dependent performance,such as breakdown characteristics and on resistance of 6H SiC unipolar power devices are derived in a closed form.The analytical results are compared with the experimental results,with good accordance found in the breakdown characteristics.展开更多
The ice melting performance of three types of deicers, including sodium chloride, calcium chloride and sodium acetate, were tested in laboratory under different temperature conditions, and their effects on asphalt mix...The ice melting performance of three types of deicers, including sodium chloride, calcium chloride and sodium acetate, were tested in laboratory under different temperature conditions, and their effects on asphalt mixture were evaluated from the point of the stripping resistance of asphalt mixture. Unsaturated Marshall samples were exposed to freeze-thaw cycling while immersed in the deicer solutions of different concentrations. After the freeze-thaw cycles, Cantabro tests were performed, and Cantabro loss was adopted to characterize the stripping resistance of asphalt mixture. The test results show that calcium chloride has the best comprehensive ice melting performance, and all deicers have detrimental effect on the stripping resistance of asphalt mixture at different degrees. The damage degree depends on deicer types and their concentration in the solution. Deicer solutions with about 2% concentration cause the greatest loss of stripping resistance due to serious freeze-thaw damage. Sodium acetate causes greater loss of stripping resistance than sodium chloride and calcium chloride at the same concentration.展开更多
Aniso-dose glycyrrhiza polysaccharide was injected into abdominal cavity of mice. The effect of glycyrrhiza polysaccharide on growth performance and immune ruction of mice was determined. The results showed that the g...Aniso-dose glycyrrhiza polysaccharide was injected into abdominal cavity of mice. The effect of glycyrrhiza polysaccharide on growth performance and immune ruction of mice was determined. The results showed that the growth performance and immune function of mice were improved and there were significant differences among the treatment groups and control group.展开更多
NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline...NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline aqueous electrolytes are complex and poorly understood,making it challenging to improve NiO thin films.We studied the phases and electrochemical characteristics of NiO films in different states(initial,colored,bleached and after 8000 cycles)and identified three main reasons for performance degradation.First,Ni(OH)_(2)is generated during electrochromic cycling and deposited on the NiO film surface,gradually yielding a NiO@Ni(OH)_(2)core-shell structure,isolating the internal NiO film from the electrolyte,and preventing ion transfer.Second,the core-shell structure causes the mode of electrical conduction to change from first-to second-order conduction,reducing the efficiency of ion transfer to the surface Ni(OH)_(2)layer.Third,Ni(OH)_(2)and NiOOH,which have similar crystal structures but different b-axis lattice parameters,are formed during electrochromic cycling,and large volume changes in the unit cell reduce the structural stability of the thin film.Finally,we clarified the mechanism of electrochromic performance degradation of NiO films in alkaline aqueous electrolytes and provide a route to activation of NiO films,which will promote the development of electrochromic technology.展开更多
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc...In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
Objective:To discuss the effect of Glycyrrhiza uralensis(G.uralensis) Fisch polysaccharide on growth performance and immunologic function in mice in Ural City,Xinjiang and to provide important data supporting the appl...Objective:To discuss the effect of Glycyrrhiza uralensis(G.uralensis) Fisch polysaccharide on growth performance and immunologic function in mice in Ural City,Xinjiang and to provide important data supporting the application of Glycyrrhiza polysaccharide.Methods:A total of100 Kunming mice aged 3 weeks old were randomly divided into 5 groups with 20 mice in each group(10 were females and 10 were males).About 0.5 mL normal saline was given to the mice of control group every day and 0.5 mL G.uralensis Fisch polysaccharide was given to the mice of other groups at the concentration of 1,20,50 and 100 mg/mL respectively.The growth performance(average body weight,average daily feed intake and feed efficiency),immune organ indexes(spleen index and thymus index) and immunologic function(serum IL-2,CD4^+/CD8^+ and the activity of NK cells) of mice in each group were detected continuously.Results:The average body weight,feed efficiency,serum IL-2,CD4^+/CD8^+ and the activity of NK cells of mice were increased with the increase of administrated time after administrating G.uralensis Fisch polysaccharide and were reached up the largest level on Day 28.At the same time,each index was proportional to the given dose and was significantly higher than those of control group and reached up the largest level at the administrated dose of 100 mg/mL.After administrating G.uralensis Fisch polysaccharide,the spleen index and thymus index of mice were increased with the increase of administrated dose and the spleen index and thymus index of mice administrated with the dose of 100 mg/mL were maximum which was more than 1.51 times and 1.43 times of that in control group respectively and the comparative differences showed statistical significance(P<0.05).The average daily feed intake of mice in each group was increased with the passage of lime and at the same time,the comparison of average daily feed intake of mice in each group was not significantly different(P>0.05).Conclusions:G.uralensis Fisch polysaccharide can significantly improve the growth performance and immunologic function of mice and laid a research basis for the clinical application of G.uralensis Fisch polysaccharide.展开更多
As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislo...As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str...The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.展开更多
Over the past decade, seismically induced damage to bridges has been widely reported following major earthquakes such as the 1994 Northridge, 1995 Kobe and 1999 Chi-Chi events. Since these earthquakes, restrainers and...Over the past decade, seismically induced damage to bridges has been widely reported following major earthquakes such as the 1994 Northridge, 1995 Kobe and 1999 Chi-Chi events. Since these earthquakes, restrainers and stoppers have been installed on bridges to prevent unseating and excessive displacements, respectively. Alternatively, column jacketing has also been proven to be effective. However, the enhanced shear strength may result in extra retrofitting works on the footing. For bridges damaged in the Chi-Chi earthquake, investigations revealed that most bridge columns experienced none-to-minor damage in the longitudinal direction. The reason for this unexpected performance was the construction practice of using a rubber bearing, which is an unbolted design that may slide under large lateral forces. In this paper, parametric studies on simply-supported bridges retrofitted by a restrainer or concrete shear key along the longitudinal and transverse axes were carried out. The research focuses on finding suitable combinations of the design force and gap spacing so the restrainer and concrete shear key can be used as an unseating prevention device, with respect to the allowable column damage in terms of displacement ductility under near-fault type earthquakes. A two-lane PCI-girder bridge was selected as the benchmark model. In the longitudinal direction, a total of nine combinations considering yielding strength and gap spacing for the restrainer were analyzed; while parameters for the concrete shear key were divided into three shear force levels and three gap spacings. In the transverse direction, a similar approach was adapted, except smaller gap spacing was used. For each of the above mentioned earthquakes, seven input ground motions were selected and their PGAs were adjusted to 0.36g and 0.45g as the Design earthquake and Maximum Considerable Earthquake, respectively. Based on the results of nonlinear time history analyses, proper parameters to design the restrainers and concrete shear keys are obtained. Responses obtained from numerical simulations under the Chi-Chi earthquake leaded to new implications to design those devices. Restrainer should not exceed its breaking strain and sufficient unseating length will be needed always. Concrete Shear key was determined by considering both displacement demand of the superstructure and displacement ductility of the column at the same time. Further study is needed to provide optimal design parameters for use in performance based bridge design.展开更多
Introduction: The impact of sleep on student life is crucial, particularly for those in demanding fields such as medicine. This study examines the relationships between sleep patterns, academic performance, and social...Introduction: The impact of sleep on student life is crucial, particularly for those in demanding fields such as medicine. This study examines the relationships between sleep patterns, academic performance, and social integration among medical students, who often face irregular sleep cycles and sleep deprivation due to rigorous academic demands. Aim: This study aims to assess how sleep issues affect academic achievement and social relationships among medical students. Method: Data were collected from 215 medical students through surveys and academic records. Quantitative data provided insights into sleep quality and academic performance, while qualitative interviews explored the effects of sleep on social interactions. Results: The findings revealed a significant correlation between sleep quality and academic performance, with students reporting better sleep hygiene achieving higher grades. Qualitative data indicated that poor sleep negatively impacts social interactions, leading to feelings of isolation and reduced social participation. Conclusions: The study highlights the importance of promoting good sleep practices in medical schools to enhance academic success and social well-being. Interventions aimed at improving sleep quality may help reduce burnout and improve overall well-being among medical students. Future research should focus on longitudinal studies to better understand the long-term effects of sleep on academic and social outcomes in this population.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nut...Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.展开更多
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
文摘A high performance 70nm CMOS device has been demonstrated for the first time in the continent, China. Some innovations in techniques are applied to restrain the short channel effect and improve the driving ability, such as 3nm nitrided oxide, dual poly Si gate electrode, novel super steep retrograde channel doping by heavy ion implantation, ultra shallow S/D extension formed by Ge PAI(Pre Amorphism Implantation) plus LEI(Low Energy Implantation), thin and low resistance Ti SALICIDE by Ge PAI and special cleaning, etc. The shortest channel length of the CMOS device is 70nm. The threshold voltages, G m and off current are 0 28V,490mS·mm -1 and 0 08nA/μm for NMOS and -0 3V,340mS·mm -1 and 0 2nA/μm for PMOS, respectively. Delays of 23 5ps/stage at 1 5V, 17 5ps/stage at 2 0V and 12 5ps/stage at 3V are achieved in the 57 stage unloaded 100nm CMOS ring oscillator circuits.
基金supports of National Natural Science Foundation of China(22308057)Outstanding Talent Introduction Funds from Fuzhou University(0040-511175)Fuzhou University Testing Fund of precious apparatus(2023T003).
文摘Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes was designed to generate Dean flow,which was used to enhance the liquid-liquid micromixing performance.The Villermaux-Dushman probe reaction was employed to characterize the micromixing performance in different curved capillary microreactors.The effects of experiment parameters such as liquid flow rate,inner diameter,tube length,and curve diameter on micromixing performance were systematically investigated.Under the optimal conditions,the minimum value of the segmentation factor XS was 0.008.It was worth noting that at the low Reynolds number(Re<30),the change of curved shape on the capillary microreactor can significantly improve the micromixing performance with XS reduced by 37.5%.Further,the correlations of segment index XS with dimensionless factor such as Reynolds number or Dean number were developed,which can be used to predict the liquid-liquid micromixing performance in capillary microreactors.
基金supported by ARO/Electronics (Grant No. W911NF-16-1-0263)the support of Bissell Distinguished Professorship at UNC-Charlotte。
文摘Despite the long history of research that has focused on the role of defects on device performance, the studies have not always been fruitful. A major reason is because these defect studies have typically been conducted in a parallel mode wherein the semiconductor wafer was divided into multiple pieces for separate optical and structural characterization, as well as device fabrication and evaluation. The major limitation of this approach was that either the defect being investigated by structural characterization techniques was not the same defect that was affecting the device performance or else the defect was not characterized under normal device operating conditions. In this review, we describe a more comprehensive approach to defect study, namely a series mode, using an array of spatially-resolved optical, electrical, and structural characterization techniques, all at the individual defect level but applied sequentially on a fabricated device. This novel sequential approach enables definitive answers to key questions, such as:(ⅰ) how do individual defects affect device performance?(ⅱ) how does the impact depend on the device operation conditions?(ⅲ) how does the impact vary from one defect to another? Implementation of this different approach is illustrated by the study of individual threading dislocation defects in GaAs solar cells. Additionally,we briefly describe a 3-D Raman thermometry method that can also be used for investigating the roles of defects in high power devices and device failure mechanisms.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
文摘The triptych (Smartphones, Video games, adolescents) has imposed itself on the collective consciousness in the form of questioning to the point of becoming a social phenomenon. It thus raises concerns about the uses that adolescents make of it and the effects on their academic performance, which we proposed to study among middle school students from the Dakar academy inspection. Where appropriate, we used mixed methods with the collection techniques of questionnaire survey, semi-structured interviews respectively with middle school students, adults (parents, supervisors, teachers, etc.), participant observation and literature review. Concretely, before accessibility to video games, the middle school students were more idle and well-behaved, watched a lot of TV, played with their brothers and sisters or did household chores. The majority of young people had good, very good or excellent conduct and their averages were fair, fairly good or good. With access to a diverse digital environment, middle school students have passionately turned to video games. As a result, their learning time, concentration and submission to parental injunctions have declined significantly. This situation negatively affected their academic performance and encouraged bad behavior.
文摘The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytical expressions of the temperature dependent performance,such as breakdown characteristics and on resistance of 6H SiC unipolar power devices are derived in a closed form.The analytical results are compared with the experimental results,with good accordance found in the breakdown characteristics.
基金The Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120092110053)
文摘The ice melting performance of three types of deicers, including sodium chloride, calcium chloride and sodium acetate, were tested in laboratory under different temperature conditions, and their effects on asphalt mixture were evaluated from the point of the stripping resistance of asphalt mixture. Unsaturated Marshall samples were exposed to freeze-thaw cycling while immersed in the deicer solutions of different concentrations. After the freeze-thaw cycles, Cantabro tests were performed, and Cantabro loss was adopted to characterize the stripping resistance of asphalt mixture. The test results show that calcium chloride has the best comprehensive ice melting performance, and all deicers have detrimental effect on the stripping resistance of asphalt mixture at different degrees. The damage degree depends on deicer types and their concentration in the solution. Deicer solutions with about 2% concentration cause the greatest loss of stripping resistance due to serious freeze-thaw damage. Sodium acetate causes greater loss of stripping resistance than sodium chloride and calcium chloride at the same concentration.
基金Natural Science Foundation of Henan Educational Committee(2003230110)Key Research Foundation of Henan Institute of Science and Techonology~~
文摘Aniso-dose glycyrrhiza polysaccharide was injected into abdominal cavity of mice. The effect of glycyrrhiza polysaccharide on growth performance and immune ruction of mice was determined. The results showed that the growth performance and immune function of mice were improved and there were significant differences among the treatment groups and control group.
基金supported by the Special Support Program for High-level Talents of Shaanxi Province(No.2020-44)Innnovative Talent Project of China and The Youth Innovation Team of Shaanxi Universities
文摘NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline aqueous electrolytes are complex and poorly understood,making it challenging to improve NiO thin films.We studied the phases and electrochemical characteristics of NiO films in different states(initial,colored,bleached and after 8000 cycles)and identified three main reasons for performance degradation.First,Ni(OH)_(2)is generated during electrochromic cycling and deposited on the NiO film surface,gradually yielding a NiO@Ni(OH)_(2)core-shell structure,isolating the internal NiO film from the electrolyte,and preventing ion transfer.Second,the core-shell structure causes the mode of electrical conduction to change from first-to second-order conduction,reducing the efficiency of ion transfer to the surface Ni(OH)_(2)layer.Third,Ni(OH)_(2)and NiOOH,which have similar crystal structures but different b-axis lattice parameters,are formed during electrochromic cycling,and large volume changes in the unit cell reduce the structural stability of the thin film.Finally,we clarified the mechanism of electrochromic performance degradation of NiO films in alkaline aqueous electrolytes and provide a route to activation of NiO films,which will promote the development of electrochromic technology.
基金supported by the Defense Industrial Technology Development Program(Grant No.JCKY2018604B004)the National Natural Science Foundation of China(Grant No.11972007)。
文摘In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金supported by Scientific Research Innovation Project of Graduate Education Innovation Fund from Xinjiang(Grant No. XJGRI2014057)
文摘Objective:To discuss the effect of Glycyrrhiza uralensis(G.uralensis) Fisch polysaccharide on growth performance and immunologic function in mice in Ural City,Xinjiang and to provide important data supporting the application of Glycyrrhiza polysaccharide.Methods:A total of100 Kunming mice aged 3 weeks old were randomly divided into 5 groups with 20 mice in each group(10 were females and 10 were males).About 0.5 mL normal saline was given to the mice of control group every day and 0.5 mL G.uralensis Fisch polysaccharide was given to the mice of other groups at the concentration of 1,20,50 and 100 mg/mL respectively.The growth performance(average body weight,average daily feed intake and feed efficiency),immune organ indexes(spleen index and thymus index) and immunologic function(serum IL-2,CD4^+/CD8^+ and the activity of NK cells) of mice in each group were detected continuously.Results:The average body weight,feed efficiency,serum IL-2,CD4^+/CD8^+ and the activity of NK cells of mice were increased with the increase of administrated time after administrating G.uralensis Fisch polysaccharide and were reached up the largest level on Day 28.At the same time,each index was proportional to the given dose and was significantly higher than those of control group and reached up the largest level at the administrated dose of 100 mg/mL.After administrating G.uralensis Fisch polysaccharide,the spleen index and thymus index of mice were increased with the increase of administrated dose and the spleen index and thymus index of mice administrated with the dose of 100 mg/mL were maximum which was more than 1.51 times and 1.43 times of that in control group respectively and the comparative differences showed statistical significance(P<0.05).The average daily feed intake of mice in each group was increased with the passage of lime and at the same time,the comparison of average daily feed intake of mice in each group was not significantly different(P>0.05).Conclusions:G.uralensis Fisch polysaccharide can significantly improve the growth performance and immunologic function of mice and laid a research basis for the clinical application of G.uralensis Fisch polysaccharide.
基金the Financial support from the National key Research and Development Program of China(Nso.2018YFB0406502,2016YFB1102201)the National Natural Science Foundation of China(Grant No.51321091)+2 种基金the key Research and Development Program of Shandong Province(No.2018CXGC0410)the Young Scholars Program of Shandong University(No.2015WLJH36)the 111 Project 2.0(No.BP2018013)
文摘As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported by the National Natural Science Foundation of China(Grant 11172013)
文摘The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.
文摘Over the past decade, seismically induced damage to bridges has been widely reported following major earthquakes such as the 1994 Northridge, 1995 Kobe and 1999 Chi-Chi events. Since these earthquakes, restrainers and stoppers have been installed on bridges to prevent unseating and excessive displacements, respectively. Alternatively, column jacketing has also been proven to be effective. However, the enhanced shear strength may result in extra retrofitting works on the footing. For bridges damaged in the Chi-Chi earthquake, investigations revealed that most bridge columns experienced none-to-minor damage in the longitudinal direction. The reason for this unexpected performance was the construction practice of using a rubber bearing, which is an unbolted design that may slide under large lateral forces. In this paper, parametric studies on simply-supported bridges retrofitted by a restrainer or concrete shear key along the longitudinal and transverse axes were carried out. The research focuses on finding suitable combinations of the design force and gap spacing so the restrainer and concrete shear key can be used as an unseating prevention device, with respect to the allowable column damage in terms of displacement ductility under near-fault type earthquakes. A two-lane PCI-girder bridge was selected as the benchmark model. In the longitudinal direction, a total of nine combinations considering yielding strength and gap spacing for the restrainer were analyzed; while parameters for the concrete shear key were divided into three shear force levels and three gap spacings. In the transverse direction, a similar approach was adapted, except smaller gap spacing was used. For each of the above mentioned earthquakes, seven input ground motions were selected and their PGAs were adjusted to 0.36g and 0.45g as the Design earthquake and Maximum Considerable Earthquake, respectively. Based on the results of nonlinear time history analyses, proper parameters to design the restrainers and concrete shear keys are obtained. Responses obtained from numerical simulations under the Chi-Chi earthquake leaded to new implications to design those devices. Restrainer should not exceed its breaking strain and sufficient unseating length will be needed always. Concrete Shear key was determined by considering both displacement demand of the superstructure and displacement ductility of the column at the same time. Further study is needed to provide optimal design parameters for use in performance based bridge design.
文摘Introduction: The impact of sleep on student life is crucial, particularly for those in demanding fields such as medicine. This study examines the relationships between sleep patterns, academic performance, and social integration among medical students, who often face irregular sleep cycles and sleep deprivation due to rigorous academic demands. Aim: This study aims to assess how sleep issues affect academic achievement and social relationships among medical students. Method: Data were collected from 215 medical students through surveys and academic records. Quantitative data provided insights into sleep quality and academic performance, while qualitative interviews explored the effects of sleep on social interactions. Results: The findings revealed a significant correlation between sleep quality and academic performance, with students reporting better sleep hygiene achieving higher grades. Qualitative data indicated that poor sleep negatively impacts social interactions, leading to feelings of isolation and reduced social participation. Conclusions: The study highlights the importance of promoting good sleep practices in medical schools to enhance academic success and social well-being. Interventions aimed at improving sleep quality may help reduce burnout and improve overall well-being among medical students. Future research should focus on longitudinal studies to better understand the long-term effects of sleep on academic and social outcomes in this population.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
基金supported by the National Natural Science Foundation of China(11972077,11672035)。
文摘Detumbling operation toward a rotating target with nutation is meaningful for debris removal but challenging. In this study, a deformable end-effector is first designed based on the requirements for contacting the nutating target. A dual-arm robotic system installed with the deformable end-effectors is modeled and the movement of the end-tips is analyzed. The complex operation of the contact toward a nutating target places strict requirements on control accuracy and controller robustness. Thus, an improvement of the tracking error transformation is proposed and an adaptive sliding mode controller with prescribed performance is designed to guarantee the fast and precise motion of the effector during the contact detumbling.Finally, by employing the proposed effector and the controller,numerical simulations are carried out to verify the effectiveness and efficiency of the contact detumbling toward a nutating target.